DOI QR코드

DOI QR Code

The Effect of Anchorage with Shear Reinforcement in Flat Plate System

플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과

  • Choi, Chang-Sik (Dept. of Architectural Engineering, Hanyang University) ;
  • Bae, Baek-Il (Dept. of Architectural Engineering, Hanyang University) ;
  • Choi, Yun-Cheul (Dept. of Architectural Environmental Engineering and Building Service, Chung-Woon University) ;
  • Choi, Hyun-Ki (Dept. of Architectural Engineering, Hanyang University)
  • 최창식 (한양대학교 건축공학부) ;
  • 배백일 (한양대학교 건축공학부) ;
  • 최윤철 (청운대학교 건축설비소방학과) ;
  • 최현기 (한양대학교 건축공학부)
  • Received : 2012.05.18
  • Accepted : 2012.08.20
  • Published : 2012.12.31

Abstract

Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

플랫 플레이트는 실의 배치가 지속적으로 바뀌는 오피스와 같이 유연한 공간의 배치를 위해 그 사용처가 증가하고 있다. 플랫 플레이트 구조를 사용함에 있어서 실무에서의 주요 문제는 슬래브-기둥 접합부에서 발생는 뚫림 전단 파괴에 대한 적절한 보강을 해주는 것이다. 이 연구에서는 플랫 플레이트 구조의 내부 슬래브-기둥 접합부에 대한 실험을 수행하였다. 세 가지의 특수한 전단 보강근이 구조물 전체의 파괴를 유발시킬 수 있는 플랫 플레이트 슬래브-기둥 접합부의 취성적인 뚫림 전단파괴를 방지하기 위해 제안되었다. 총 네 가지의 프랫 플레이트 실험체가 수직 방향의 단조 가력에 의해 수행되었다. 전단 보강근은 뚫림 전단강도를 높여주는 역할과 취성파괴를 방지하는 역할을 해 주었다. 수행된 실험에서 전단보강근이 충분한 정착길이를 확보하지 못하여 전단보강근의 항복 이전에 파괴가 일어났다. 실험 결과를 통한 FE 모델의 검증이 이루어졌으며 검증된 FE 모델을 통해 전단보강근의 부착 성능에 대한 변수 분석이 수행되었다. 주요 변수는 슬래브의 두께, 콘크리트의 압축강도였으며 전단보강근의 성능을 산정할 수 있는 방법을 제시하였다.

Keywords

References

  1. ACI-ASCE Committee Report, "Recommendations for Design of Slab-Column Connections in Monolithic Reinforced Concrete Structures," ACI Structural Journal, Vol. 85, No. 6, 1988, pp. 675-696.
  2. Korea Concrete Institute, Concrete Design Code, Kimoondang Publishing Company, Seoul, Korea, 2007, pp. 452-455.
  3. ACI Committe 318, Building Code Requirements for Structural Concrete (ACI 318R-05), American Concrete Institue, USA, 2004, pp. 156-160.
  4. Park, H. G., Kim, Y. N., Song, J. K., Kim, S. K., and Lee, C. W., "Lattice Shear Reinforcement for Slab-Column Connection Subjected to Unbalanced Moment," Journal of the Korea Concrete Institute, Vol. 19, No. 3, 2007, pp. 301-312. https://doi.org/10.4334/JKCI.2007.19.3.301
  5. Robertson, I. N., Kawai, T., Lee, J., and Enomoto, B., "Cyclic Testing of Slab-Column Connections with Shear Reinforcement," ACI Structural Journal, Vol. 99, No. 5, 2002, pp. 605-613.
  6. Ghali, A. and Hammill, N., "Effectiveness of Shear Reinforcement in Slabs," Concrete International, 1992, January, pp. 60-65.
  7. Mortin, J. D. and Ghali, A., "Connection of Flat Plates to Edge Connections Subjected to High Moments," Canadian Journal for Civil Engineering, Vol. 25, 1998, pp. 526-538. https://doi.org/10.1139/l97-117
  8. Salakawy, E. F. EI, Polak, M. A., and Soliman, M. H., "Slab- Column Edge Connections Subjected to High Moments," Canadian Journal for Civil Engineering, Vol. 25, 1998, pp. 526-538. https://doi.org/10.1139/l97-117
  9. Megally, S. and Ghali, A., "Seismic Behavior of Edge Column- Slab Connections with Stud Shear Reinforcement," ACI Structural Journal, Vol. 97, No. 1, 2000, pp. 53-59.
  10. Elgabry, A. A. and Ghali, A., "Tests on Concrete Slab-Column Connections with Stud-Shear Reinforcement Subjected to Shear-Moment Transfer," ACI Structural Journal, Vol. 84, No. 5, 1987, pp. 433-442.
  11. Limand, F. K. and Rangan, B. V., "Studies on Concrete Slabs with Stud Shear Reinforcement in Voconity of Edge and Corner Columns," ACI Structural Journal, Vol. 92, No. 5, 1995, pp. 515-525.
  12. Hammil, N. and Ghali, A., "Punching Shear Resistance of Corner Slab-Column Connections," ACI Structural Journal, Vol. 91, No. 6, 1994, pp. 697-707.
  13. Choi, H. K., Kim, J. S., Choi, Y. C., Back, Y. S., Jin, E. S., and Choi, C. S., "Study on Flat Plate-Column Connection for Shear Reinforcement," Journal of the Architectural Institute of Korea, Vol. 24, No. 8, 2008, pp. 21-28.
  14. Choi, H. K., Beck, S. W., Choi, Y. C., and Choi, C. S., "Shear Reinforcement of Flat Plate Exterior Slab-Column Connection," Journal of the Architectural Institute of Korea, Vol. 24, No. 5, 2008, pp. 35-42.
  15. Dilger, W. H. and Ghali, A., "Proposed Revisions to: Building Code Requirements for Reinforced Concrete," Journal of American Concrete Institute, Vol. 86, No. 5, 1989, pp. 326-329.
  16. Regan, P. E. and Long, A. E., "Predicting the Enhanced Punching Strength of Interior Slab-Column Connections," Proceedings of the Institution of Civil Engineering, Part 1, Vol. 82, 1987 pp. 1165-1186. https://doi.org/10.1680/iicep.1987.224
  17. Alsiwat, J. M. and Saatcioglu, M., "Reinforcement Anchorage Slip under Monotonic Loading," Journal of Structural Engineering, ASCE, Vol. 118, No. 9, 1992, pp. 24-39. (doi: http://dx.doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2421))
  18. Hognestad, E., "A Study of Combined Bending and Axial Load in Reinforced Concrete Members," Bulletin No. 399, Engineering Experimental Station University of Illinois, Urbana, Illinois, Vol. 49, No. 22, 1951, pp. 55-87.
  19. Ottosen, N. S., "A Failure Criterion for Concrete," Journal of the Engineering Mechanics Division, Vol. 103, No. EM4, 1977, pp. 527-535.
  20. CEB-FIP Model Code 1990, Design Code, Thomas Telford, Lausanne, Switzerland, 1993, pp. 174-184.
  21. Austin, D. P. and Moehle, J. P., "An Experimental Study of Slab-Column Connection," ACI Structural Journal, Vol. 89, No. 6, 1992, pp. 626-638.
  22. Broms, C. E., "Shear Reinforcement for Deflection Ductility of Flat Plates," ACI Structural Journal, Vol. 87, No. 6, 1990, 548 pp.
  23. Buetel, R. and Hegger, J., "Punching Shear Resistance of Shear Reinforced Flat Slabs," Cement and Concrete Composites, No. 24, 2002, pp. 539-549.
  24. Yamade, T., Nanni, A., and Endo, K., "Punching Shear Resistance of Flat Slab: Influence of Reinforcement Type and Ratio," ACI Structural Journal, Vol. 89, No. 4, 1992, pp. 555-564.
  25. CEB-FIP, Punching of Structural Concrete Slabs, CEB-Bull, 12, April 2001, pp. 215-284.