DOI QR코드

DOI QR Code

Chemical Evaluation of Corrosion Resistance for Stainless-Steel Plate Wet-Coated by Alumina-Fluoro Composite Coatings

알루미나-불소 복합 코팅제로 습식코팅된 스텐레스 강판의 화학 내식성 평가

  • Jung, Ha-Young (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Kim, Dae Sung (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Lee, Seung-Ho (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Lim, Hyung Mi (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Kim, Kun (Semiline Co.) ;
  • Jung, Min-Kyu (Semiline Co.)
  • 정하영 (한국세라믹기술원 에너지환경소재본부 에코복합소재센터) ;
  • 김대성 (한국세라믹기술원 에너지환경소재본부 에코복합소재센터) ;
  • 이승호 (한국세라믹기술원 에너지환경소재본부 에코복합소재센터) ;
  • 임형미 (한국세라믹기술원 에너지환경소재본부 에코복합소재센터) ;
  • 김건 ((주)세미라인) ;
  • 정민규 ((주)세미라인)
  • Received : 2012.10.19
  • Accepted : 2012.11.09
  • Published : 2012.12.27

Abstract

Coatings composited with alumina and Perfluoro alkoxyalkane (PFA) resin were deposited on stainless steel plate (SUS304) to further improve corrosion resistance. Plate (ca. $10{\mu}m$) and/or nanosize (27~43 nm) alumina used as inorganic additives were mixed in PFA resin to make alumina-fluoro composite coatings. These coatings were deposited on SUS304 plate with wet spray coating and then the film was cured thermally. According to the amount and ratio of the two kinds of alumina having plate morphology and nano size, corrosion resistance of the film was evaluated under strong acids (HF, HCl) and a strong base (NaOH). The film prepared with the addition of 5~10 wt% alumina powders in PFA resin showed corrosion resistance superior to that of pure PFA resin film. However, for the film prepared with alumina content above 10 wt%, the corrosion resistance did not improve with the physical properties, such as surface hardness and adhesion. The film prepared with plate/nanosize (weight ratio = 1/2) alumina especially enhanced the surface hardness and corrosion resistance. This can be explained as showing that the plate and the nanosize alumina dispersed in PFA resin effectively suppressed the penetration of cations and anions due to the long penetration length and fewer defects that accompany the improved surface hardness under a serious environment of 10% HF solution for over 120 hrs.

Keywords

References

  1. Y. J. Du, M. Damron, G. Tang, H. Zheng, C. -J. Chu and J. H. Osborne, Prog. Org. Coat., 41, 226 (2001). https://doi.org/10.1016/S0300-9440(01)00133-3
  2. Y. Bautista, M. P. Gomez, C. Ribes and V. Sanz, Prog. Org. Coat., 70, 358 (2011). https://doi.org/10.1016/j.porgcoat.2010.09.033
  3. B. S. Bae, Polym. Sci. Technol., 12(5), 716 (2001) (in Korean).
  4. Y. Liu, D. Sun, H. You and J. S. Chung, Appl. Surf. Sci., 246(1-3), 82 (2005). https://doi.org/10.1016/j.apsusc.2004.10.040
  5. K. -H. Haas, S. Amberg-Schwab, K. Rose and G. Schottner, Surf. Coat. Technol., 111(1), 72 (1999). https://doi.org/10.1016/S0257-8972(98)00711-7
  6. J. -Y. Kim, H. -S. Kim and W. -K. Bae, J. Kor. Inst. Resources Recycling, 18(4), 62 (2009) (in Korean).
  7. S. K. Woo, K. S. Hong, K. Bae, I. S. Han, K. S. Lee, D. W. Seo and S. Y. Noo, Kor. Soc. Energy. Eng., 18(2), 215 (2000) (in Korean).
  8. S. I. Lee and S. S. Cha, J. Kor. Inst. Surf. Eng., 25(1), 40 (1992) (in Korean).
  9. S. Korenev and V. Sikolenko, Radiat. Phys. Chem., 71(1- 2), 521 (2004).
  10. S. M. Lee, B. S. Lee, T. G. Byun and K. C. Song, Colloids Surf., A, 355(1-3), 167 (2010). https://doi.org/10.1016/j.colsurfa.2009.12.010
  11. R. L. Twite and G. P. Bierwagen, Prog. Org. Coat., 33(2). 91 (1998). https://doi.org/10.1016/S0300-9440(98)00015-0
  12. A. J. Brunner, A. Necola, M. Rees, Ph. Gasser, X. Kornmann, R. Thomann and M. Barbezat, Eng. Fract. Mech., 73(16), 2336 (2006). https://doi.org/10.1016/j.engfracmech.2006.05.004
  13. C. Mateus, S. Costil, R. Bolot and C. Coddet, Surf. Coat. Technol., 191(1). 108 (2005). https://doi.org/10.1016/j.surfcoat.2004.04.084
  14. J. -H. Lee, H. -S. Kim, H. -K. Yoon and T. -G. Kim, J. Ocean Eng. & Technol., 23(6), 99 (2009) (in Korean).
  15. H. Wang, L. Gao, Z. Shen and M. Nygren, J. Eur. Ceram. Soc., 21(6), 779 (2001). https://doi.org/10.1016/S0955-2219(00)00262-4
  16. Y. Ye, J. Li, H. Zhou and J. Chen, Ceram. Int., 34(8), 1797 (2008). https://doi.org/10.1016/j.ceramint.2007.06.005
  17. R. Zandi-zand, A. Ershad-langroudi and A. Rahimi, Prog. Org. Coat., 53(4), 286 (2005). https://doi.org/10.1016/j.porgcoat.2005.03.009
  18. H. Liu, H. Ye and Y. Zhang, Colloids Surf., A, 315(1-3), 1 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.057
  19. H. Zhu, X. Qu, Y. Hu, H. Xie and Z. Chen, Corros. Sci., 53(1), 481 (2011). https://doi.org/10.1016/j.corsci.2010.09.062
  20. D. -H. Lee, S. -B. Ryu, D. S. Kim, H. M. Lim and S. - H. Lee, Kor. J. Mater. Res., 22(1), 54 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.1.054
  21. M. Schacht, N. Boukis and E. Dinjus, J. Mater. Sci., 35(24), 6251 (2000). https://doi.org/10.1023/A:1026714218522
  22. M. Nematollahi, M. Heidarian, M. Peikari, S. M. Kassiriha, N. Arianpouya and M. Esmaeilpour, Corros. Sci., 52(1), 1809 (2010). https://doi.org/10.1016/j.corsci.2010.01.024
  23. X. Qi, C. Vetter, A. C. Harper and V. J. Gelling, Prog. Org. Coat., 63, 345 (2008). https://doi.org/10.1016/j.porgcoat.2007.12.003