DOI QR코드

DOI QR Code

Electrical Property of ZnO Nanorods Grown by Chemical Bath Deposition

CBD 방법에 의해 제조된 ZnO 나노로드의 전기적 특성

  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology, Optic & Display Materials Team) ;
  • Lee, Mi-Jai (Korea Institute of Ceramic Engineering and Technology, Optic & Display Materials Team) ;
  • Hwang, Jonghee (Korea Institute of Ceramic Engineering and Technology, Optic & Display Materials Team) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering and Technology, Optic & Display Materials Team)
  • 김진호 (한국세라믹기술원 광디스플레이소재팀) ;
  • 이미재 (한국세라믹기술원 광디스플레이소재팀) ;
  • 황종희 (한국세라믹기술원 광디스플레이소재팀) ;
  • 임태영 (한국세라믹기술원 광디스플레이소재팀)
  • Received : 2012.10.31
  • Accepted : 2012.12.03
  • Published : 2012.12.27

Abstract

ZnO nanorods were successfully fabricated on Zn foil by chemical bath deposition (CBD) method. The ZnO precursor concentration and immersion time affected the surface morphologies, structure, and electrical properties of the ZnO nanorods. As the precursor concentration increased, the diameter of the ZnO nanorods increased from ca. 50 nm to ca. 150 nm. The thicknesses of the ZnO nanorods were from ca. $1.98{\mu}m$ to ca. $2.08{\mu}m$. ZnO crystalline phases of (100), (002), and (101) planes of hexagonal wurtzite structure were confirmed by XRD measurement. The fabricated ZnO nanorods showed a photoluminescene property at 380 nm. Especially, the ZnO nanorods deposited for 6 h in solution with a concentration of 0.005M showed a stronger (101) peak than they did (100) or (002) peaks. In addition, these ZnO nanorods showed a good electrical property, with the lowest resistance among the four samples, because the nanorods were densely in contact and relatively without pores. Therefore, a ZnO nanorod substrate is useful as a highly sensitive biochip substrate to detect biomolecules using an electrochemical method.

Keywords

References

  1. Z. L. Wang and J. Song, Science, 312, 242 (2006). https://doi.org/10.1126/science.1124005
  2. Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., 83, 4719 (2003). https://doi.org/10.1063/1.1632537
  3. Y. J. Kim, G. Cao, Y. C. Kim, S. J. Ahn and J. W. Min, J. Kor. Ceram. Soc., 42, 521 (2005) (in Korean). https://doi.org/10.4191/KCERS.2005.42.7.521
  4. J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, D. Steeves, B. Kimball and W. Porter, Appl. Phys. A: Mater. Sci. Process., 78, 539 (2004). https://doi.org/10.1007/s00339-003-2391-2
  5. L. Vayssiers, K. Keis, S. E. Lindquist and A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001). https://doi.org/10.1021/jp010026s
  6. B. Liu and H. C. Zeng, J. Am. Chem. Soc., 125, 4430 (2003). https://doi.org/10.1021/ja0299452
  7. Y. J. Kim, H. Shang and G. Cao, J. Sol-Gel Sci. Technol., 38, 79 (2006). https://doi.org/10.1007/s10971-006-5731-9
  8. X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang and D. Zhu, J. Am. Chem. Soc., 126, 62 (2004). https://doi.org/10.1021/ja038636o
  9. A. Sugunam, H. C. Warad, M. Boman and J. Dutta, J. Sol-Gel Sci. Technol., 39, 49 (2006). https://doi.org/10.1007/s10971-006-6969-y
  10. H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han and M. Meyyappan, Science, 300, 1249 (2003). https://doi.org/10.1126/science.1082542
  11. Y. Zhou, P. J Kelly, A. Postill, O. Abu-Zeid and A. A. Alnajjar, Thin Soild Films, 447-448, 33 (2004). https://doi.org/10.1016/j.tsf.2003.09.018
  12. M. Jeong, D. Choi, Y. Jin, S. Choi and D. Han, Kor. J. Mater. Res., 22(4), 180 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.4.180
  13. T. M. Barnes, J. Leaf, C. Fry and C. A. Wolden, J. Cryst. Growth, 274, 412 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.015
  14. Y. Yang, H. Chen, B. Zhao and X. Bao, J. Cryst. Growth, 263, 447 (2004). https://doi.org/10.1016/j.jcrysgro.2003.12.010
  15. P. Saravanan, S. Alam and G. N. Mathur, Mater. Lett., 58, 3528 (2004). https://doi.org/10.1016/j.matlet.2004.05.084
  16. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett., 396, 21 (2004). https://doi.org/10.1016/j.cplett.2004.07.110
  17. J. H. Lee, K. H. Ko and B. O. Park, J. Cryst. Growth, 247, 119 (2003). https://doi.org/10.1016/S0022-0248(02)01907-3
  18. R. Ghosh, G. K. Paul and D. Basak, Mater. Res. Bull., 40, 1905 (2005). https://doi.org/10.1016/j.materresbull.2005.06.010
  19. Y. Masuda, N. Kinoshita and K. Koumoto, Electrochim. Acta, 53, 171 (2007). https://doi.org/10.1016/j.electacta.2007.02.070