DOI QR코드

DOI QR Code

Sintering and Electrical Properties According to Sb/Bi Ratio(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3 Varistor

Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3

  • Hong, Youn-Woo (Electronic Materials Convergence Division, KICET) ;
  • Lee, Young-Jin (Electronic Materials Convergence Division, KICET) ;
  • Kim, Sei-Ki (Electronic Materials Convergence Division, KICET) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 전자소재융합본부) ;
  • 이영진 (한국세라믹기술원 전자소재융합본부) ;
  • 김세기 (한국세라믹기술원 전자소재융합본부) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2012.10.26
  • Accepted : 2012.12.11
  • Published : 2012.12.27

Abstract

We aimed to examine the co-doping effects of 1/6 mol% $Mn_3O_4$ and 1/4 mol% $Cr_2O_3$ (Mn:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Cr-doped ZBS, ZBS(MnCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ (also ${\beta}-Bi_2O_3$ at Sb/Bi ${\leq}$ 1.0) were detected for all of the systems. Mn and Cr are involved in the development of each phase. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 system by Mn rather than Cr doping. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(MnCr), the varistor characteristics were improved dramatically (non-linear coefficient, ${\alpha}$ = 40~78), and seemed to form ${V_o}^{\cdot}$(0.33 eV) as a dominant defect. From impedance and modulus spectroscopy, the grain boundaries can be seen to have divided into two types, i.e. one is tentatively assigned to ZnO/$Bi_2O_3$ (Mn,Cr)/ZnO (0.64~1.1 eV) and the other is assigned to the ZnO/ZnO (1.0~1.3 eV) homojunction.

Keywords

References

  1. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
  2. K. Eda, IEEE Electr. Insul. Mag., 5(6), 28 (1989).
  3. R. Einzinger, Annu. Rev. Mater. Sci., 17, 299 (1987). https://doi.org/10.1146/annurev.ms.17.080187.001503
  4. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  5. M. Inada and K. Matsuoka, Advances in Ceramics; Vol. 7, p.91, edited by M. F. Yan and A. H. Heuer, American Ceramic Society, Columbus, OH, USA (1984).
  6. J. Kim, T. Kimura and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07659.x
  7. Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000) (in Korean).
  8. Y. -W. Hong, H. -S. Shin, D. -H. Yeo, J. -H. Kim and J. -H. Kim, J. KIEEME, 21, 738 (2008) (in Korean).
  9. L. Karanovic , D. Poleti and D. Vasovi , Mater. Lett., 18, 191 (1994). https://doi.org/10.1016/0167-577X(94)90229-1
  10. A. Mergen and W. E. Lee, J. Eur. Ceram. Soc., 17, 1049 (1997). https://doi.org/10.1016/S0955-2219(96)00248-8
  11. Z. Brankovic, G. Brankovic, D. Poleti and J. A. Varela, Ceram. Int., 27, 115 (2001). https://doi.org/10.1016/S0272-8842(00)00051-1
  12. Y. -W. Hong, H. -S. Shin, D. -H. Yeo and J. -H. Kim, J. KIEEME, 23, 942 (2010) (in Korean).
  13. A. R. West and M. Andres-Verges, J. Electroceram., 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  14. K. A. Abdullah, A. Bui and A. Loubiere, J. Appl. Phys., 69, 4046 (1991). https://doi.org/10.1063/1.348414
  15. I. M. Hodge, M. D. Ingram and A. R. West, J. Electroanal. Chem., 74, 125 (1976). https://doi.org/10.1016/S0022-0728(76)80229-X
  16. R. Gerhardt, J. Phys. Chem. Solids, 55, 1491 (1994). https://doi.org/10.1016/0022-3697(94)90575-4
  17. Y. -W. Hong, H. -S. Shin, D. -H. Yeo, J. -H. Kim and J. -H. Kim, J. KIEEME, 22, 941 (2009) (in Korean).
  18. Y. -W. Hong, H. -S. Shin, D. -H. Yeo and J.-H. Kim, J. KIEEME, 24, 969 (2011) (in Korean).
  19. Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004). https://doi.org/10.1016/j.ceramint.2003.12.026
  20. B. S. Chiou and M. C. Chung, J. Electron. Mater., 20, 885 (1991). https://doi.org/10.1007/BF02665979
  21. P. R. Bueno, J. A. Varela and E. Longo, J. Eur. Ceram. Soc., 28, 505 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.06.011