DOI QR코드

DOI QR Code

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-NiO-Cr2O3 Varistor

Sb/Bi비가 ZnO-Bi2O3-Sb2O3-NiO-Cr2O3 바리스터의 소결과 입계 특성에 미치는 영향

  • Hong, Youn-Woo (Electronic Materials Convergence Division, KICET) ;
  • Lee, Young-Jin (Electronic Materials Convergence Division, KICET) ;
  • Kim, Sei-Ki (Electronic Materials Convergence Division, KICET) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 전자소재융합본부) ;
  • 이영진 (한국세라믹기술원 전자소재융합본부) ;
  • 김세기 (한국세라믹기술원 전자소재융합본부) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2012.10.26
  • Accepted : 2012.12.03
  • Published : 2012.12.27

Abstract

We have examined the co-doping effects of 1/2 mol% NiO and 1/4 mol% $Cr_2O_3$ (Ni:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Ni,Cr-doped ZBS, ZBS(NiCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ were detected for all of compositions. For the sample with Sb/Bi = 1.0, the Pyrochlore was decomposed and promoted densification at lower temperature by Ni rather than by Cr. A homogeneous microstructure was obtained for all of the samples affected by ${\alpha}$-spinel. The varistor characteristics were not dramatically improved (non-linear coefficient, ${\alpha}$ = 5~24), and seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.17 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to have been divided into two types, i.e., one is tentatively assigned to ZnO/$Bi_2O_3$ (Ni,Cr)/ZnO (0.98 eV) and the other is assigned to a ZnO/ZnO (~1.5 eV) homojunction.

Keywords

References

  1. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
  2. K. Eda, IEEE Electr. Insul. Mag., 5(6), 28 (1989).
  3. R. Einzinger, Annu. Rev. Mater. Sci., 17, 299 (1987). https://doi.org/10.1146/annurev.ms.17.080187.001503
  4. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  5. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  6. M. Inada and K. Matsuoka, Advances in Ceramics; Vol. 7, p. 91, edited by M. F. Yan and A. H. Heuer, American Ceramic Society, Columbus, OH, USA (1984).
  7. J. Kim, T. Kimura and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07659.x
  8. Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000) (in Korean).
  9. Y. -W. Hong, H. -S. Shin, D. -H. Yeo, J. -H. Kim and J. -H. Kim, J. KIEEME, 21, 738 (2008) (in Korean).
  10. L. Karanovic, D. Poleti and D. Vasovic, Mater. Lett., 18, 191 (1994). https://doi.org/10.1016/0167-577X(94)90229-1
  11. A. Mergen and W. E. Lee, J. Eur. Ceram. Soc., 17, 1049 (1997). https://doi.org/10.1016/S0955-2219(96)00248-8
  12. Z. Brankovic, G. Brankovic, D. Poleti and J. A. Varela, Ceram. Int., 27, 115 (2001). https://doi.org/10.1016/S0272-8842(00)00051-1
  13. Y. -W. Hong, H. -S. Shin, D. -H. Yeo, J. -H. Kim and J. -H. Kim, J. KIEEME, 22, 941 (2009) (in Korean).
  14. Y. -W Hong, H. -S. Shin, D. -H. Yeo and J. -H. Kim, J. KIEEME, 23, 942 (2010) (in Korean).
  15. Y. -W. Hong, H. -S. Shin, D. -H. Yeo and J. -H. Kim, J. KIEEME, 24, 969 (2011) (in Korean).
  16. A. R. West and M. Andres-Verges, J. Electroceram., 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  17. K. A. Abdullah, A. Bui and A. Loubiere, J. Appl. Phys., 69, 4046 (1991). https://doi.org/10.1063/1.348414
  18. I. M. Hodge, M. D. Ingram and A. R. West, J. Electroanal. Chem., 74, 125 (1976). https://doi.org/10.1016/S0022-0728(76)80229-X
  19. R. Gerhardt, J. Phys. Chem. Solids, 55, 1491 (1994). https://doi.org/10.1016/0022-3697(94)90575-4
  20. Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004). https://doi.org/10.1016/j.ceramint.2003.12.026
  21. Y. -W. Hong, H. -S. Shin, D. -H. Yeo, J. -H. Kim and J. -H. Kim, J. KIEEME, 22, 949 (2009) (in Korean).
  22. B. S. Chiou and M. C. Chung, J. Electron. Mater., 20, 885 (1991). https://doi.org/10.1007/BF02665979
  23. P. R. Bueno, J. A. Varela and E. Longo, J. Eur. Ceram. Soc., 28, 505 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.06.011