DOI QR코드

DOI QR Code

Barium Nitrate Single Crystals Growth by Aqueous Solution Method

  • Joo, Gi-Tae (Dept. of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Kang, Bonghoon (Department of Visual Optics, Far East University)
  • Received : 2012.11.22
  • Accepted : 2012.12.03
  • Published : 2012.12.27

Abstract

The growing conditions of barium nitrate $Ba(NO_3)_2$ single crystals using the aqueous solution method have been studied. Supersaturation can be calculated by measuring the temperature of the solution and its equilibrium temperature. Supersaturation of $Ba(NO_3)_2$ was 0.7% at $32.0^{\circ}C$ and about 3% at $34.0^{\circ}C$. The obtained single crystals have three kind of morphology: tetrahedral, cubic, and, rarely, dodecahedral. The normal growth rate is proportional to the supersaturation; it is necessary to make the solution below 5% supersaturation in order to obtain transparent $Ba(NO_3)_2$ single crystals. The normal growth rate for {1$\bar{1}$1} faces was $2.51{\times}10^{-6}$ mm/s for the 0.7% supersaturation condition ($32.0^{\circ}C$), $6.43{\times}10^{-6}$ mm/s for the the condition of 3.0% supersaturation, and $7.01{\times}10^{-6}$ mm/s for the condition of 5.0% supersaturation. The quality of the grown crystals depends on the nature of the seed, the cooling rate employed, and the agitation of the solution. The faces of the obtained crystals have been identified uising an X-ray diffractometer. The surface diffusion is responsible for the low growth rates of the {1$\bar{1}$1} faces.

Keywords

References

  1. S. N. Karpukhin, Proc. SPIE, 4350, 39 (2001). doi: 10.1117/12.420972.
  2. V. G. Bespalov and N. S. Makarov, Opt. Commun., 203, 413 (2002). https://doi.org/10.1016/S0030-4018(02)01166-5
  3. A. V. Konyashchenko, L. L. Losev and S. Y. Tenyakov, Quantum Electron., 40, 700 (2010). https://doi.org/10.1070/QE2010v040n08ABEH014361
  4. P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii and V. E. Yakobson, Opt. Mater., 11, 315 (1999). https://doi.org/10.1016/S0925-3467(98)00031-7
  5. P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves and T. T. Basiev, Opt. Commun., 97, 59 (1993). https://doi.org/10.1016/0030-4018(93)90617-E
  6. P. R. Mildren, H. Ogilvy, M. H. Pask and A. J. Piper, EP1810380A1(patent) 2007.
  7. K. Tsukamoto, H. Ohba and I. Sunagawa, J. Cryst. Growth, 63, 18 (1983). https://doi.org/10.1016/0022-0248(83)90422-0
  8. B. Y. Shekunov, L. N. Rashkovich and I. L. Smol'kii, J. Cryst. Growth, 116, 340 (1992). https://doi.org/10.1016/0022-0248(92)90642-V
  9. P. Bennema and H. B. K. Haneveld, J. Cryst. Growth, 1, 225 (1967). https://doi.org/10.1016/0022-0248(67)90057-7
  10. A. V. Shubnikov and N. N. Sheftal', Growth of Crystals, Vol. I, 2nd ed., p. 134, Consultants Bureau Inc., NY, USA (1959).
  11. K. Maiwa, K. Tsukamoto and I. Sunagawa, J. Cryst. Growth, 82, 611 (1987). https://doi.org/10.1016/S0022-0248(87)80005-2
  12. C. Z. Ge, Z. H. Wu, H. W. Wang, M. Qi and N. B. Ming, J. Appl. Phys., 78, 111 (1995). https://doi.org/10.1063/1.360659
  13. M. Wang, R. W. Peng, P. Bennema and N. B. Ming, Philos. Mag., A71, 409 (1995).
  14. K. Maiwa, K. Tsukamoto and I. Sunagawa, J. Cryst. Growth, 102, 43 (1990). https://doi.org/10.1016/0022-0248(90)90887-Q
  15. K. Onuma, T. Kameyama and K. Tsukamoto, J. Cryst. Growth, 137, 610 (1996).
  16. K. Onuma, T. Nakamura and S. Kuwashima, J. Cryst. Growth, 167, 387 (1996). https://doi.org/10.1016/0022-0248(96)00270-9
  17. B. R. Pamplin, Crystal Growth, 2nd ed., p. 78, Pergamon Press Ltd., Oxford, UK (1980).
  18. P. Bennema, in Proceedings of the International Conference on Crystal Growth (Boston, USA, June 1966) D13, p.413.
  19. W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. R. Soc. Lon. A, 243, 299 (1951). doi:10.1098/rsta.1951.0006.