DOI QR코드

DOI QR Code

Electrochemical Properties of Activated Carbon Capacitor Adopting a Proton-conducting Hydrogel Polymer Electrolyte

수소이온전도성 고분자 겔전해질을 적용한 활성탄소계 전기이중층 캐패시터의 전기화학적 특성

  • Latifatu, Mohammed (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Yong Joo (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Ko, Jang Myoun (Division of Applied Chemistry and Biotechnology, Hanbat National University)
  • Received : 2012.10.23
  • Accepted : 2012.11.18
  • Published : 2012.12.31

Abstract

An electric double-layer capacitor (ELDC) of activated carbon electrode is prepared using a proton-conducting hydrogel polymer electrolyte, which is composed of poly(vinyl alcohol), silicotungstic acid, $H_3PO_4$, and deionized water. A solid film by evaporating the hydrogel polymer electrolyte is also prepared for comparison. The hydrogel polymer electrolyte also acts as a separator with the thickness of about $80{\mu}m$ and the room-temperature ionic conductivity of $10^{-2}S\;cm^{-1}$. The EDLC containing the symmetric electrodes of activated carbon shows the specific capacitance of $58F\;g^{-1}$ at $100mV\;s^{-1}$ with a good cycle life, implying that the hydrogel polymer electrolyte is very promising for use in EDLCs.

폴리비닐알콜, 규소텅스텐산, 인산 및 수용액으로 구성된 $80{\mu}m$의 두께의 고분자겔 전해질 필름을 제조하여 활성탄소계 전기이중층 케페시터를 제조하였다. 제조한 고분자겔 전해질 필름은 상온에서 $10^{-2}S\;cm^{-1}$의 높은 이온전도도를 나타내었으며, 본 전해질 필름을 적용한 활성탄소계 전기이중층 케패시터는 100 mV/s에서 $58F\;g^{-1}$의 높은 캐패시턴스 특성과 우수한 수명특성을 나타내었다.

Keywords

References

  1. C.-P. Tien, W.-J. Liang, P.-L. Kuo, and H.-S. Teng, "Electric double layer capacitors with gelled polymer electrolytes based on poly(ethylene oxide) cured with poly(propylene oxide) diamines", Electrochim. Acta, 53, 4505 (2008). https://doi.org/10.1016/j.electacta.2008.01.021
  2. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, "Progress of electrochemical capacitor electrode materials: A review", Intern. J. Hydrogen Energy, 34, 4889 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
  3. Y. G. Wang and X. G. Zhang, "solid-state polymer nanocomposite electrodes for flexible, ultrathin supercapacitors", solid state ionics, 166, 61 (2004). https://doi.org/10.1016/j.ssi.2003.11.001
  4. H. Gao, Q. Tian, K. Lian, "Polyvinyl alcohol-heteropoly acid polymer electrolytes and their applications in electrochemical capacitors", Solid State Ionics, 181, 874 (2010). https://doi.org/10.1016/j.ssi.2010.05.006
  5. K. Lian and C. M. Li, "Solid polymer electrochemical capacitors using heteropoly acid electrolytes", Electrochem. Commun., 11, 22 (2009) https://doi.org/10.1016/j.elecom.2008.10.016
  6. S. Nohara, T. Miura, C. Iwakura, and H. Inoue, "Electric double layer capacitor using polymer hydrogel electrolyte with 4 M $H_{2}SO_{4}$ Aqueous Solution", Electrochemistry, 75, 579 (2007). https://doi.org/10.5796/electrochemistry.75.579
  7. http://en.wikipedia.org/wiki/polyvinyl_alcohol.
  8. S. Paţachia, C. Florea, C. Friedrich, and Y. Thomann, "Tailoring of poly(vinyl alcohol) cryogels properties by salts addition", Express Polym. Lett., 3, 320 (2009). https://doi.org/10.3144/expresspolymlett.2009.40
  9. S. Sampath, N. A. Choudhury, and A. K. Shukla, "Hydrogel membrane electrolyte for electrochemical capacitors", J. Chem. Sci., 121, 727 (2009). https://doi.org/10.1007/s12039-009-0087-7
  10. S. Naficy, J. M. Razal, G. M. Spinks, G. G. Wallace, and P. G. Whitten, "Electrically Conductive, Tough Hydrogels with pH Sensitivity", Chem. Mater., 24, 3425 (2012). https://doi.org/10.1021/cm301666w
  11. S. Gupta, T. J. Webster, and A. Sinha, "Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface", J. Mater. Sci. Mater. Med., 22, 1763 (2011). https://doi.org/10.1007/s10856-011-4343-2

Cited by

  1. Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell vol.37, pp.4, 2013, https://doi.org/10.7317/pk.2013.37.4.470
  2. Facile and scalable fabrication of transparent and high performance Pt/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells vol.15, pp.6, 2014, https://doi.org/10.1007/s12541-014-0456-0