DOI QR코드

DOI QR Code

Effects of Plasma Treatment on Mechanical Properties of Jute Fibers and Their Composites with Polypropylene

황마섬유 및 황마-폴리프로필렌 복합체의 특성에 미치는 플라즈마 처리영향

  • Huh, Yang Il (Department of Polymer and Fiber System Engineering, Chonnam National University) ;
  • Bismark, Mensah (Department of Polymer Nano Science & Technology, Jeonbuk National University) ;
  • Kim, Sungjin (Department of Polymer Nano Science & Technology, Jeonbuk National University) ;
  • Lee, Hong Ki (Fuel Cell Regional Innovation Center, Woosuk University) ;
  • Nah, Changwoon (Department of Polymer and Fiber System Engineering, Chonnam National University)
  • 허양일 (전남대학교 고분자섬유시스템공학과) ;
  • 멘사비스마르크 (전북대학교 고분자.나노공학과) ;
  • 김성진 (전북대학교 고분자.나노공학과) ;
  • 이홍기 (우석대학교 지역혁신센터) ;
  • 나창운 (전남대학교 고분자섬유시스템공학과)
  • Received : 2012.08.21
  • Accepted : 2012.09.17
  • Published : 2012.12.31

Abstract

A jute fiber surface was modified with argon gas in a cylinder type RF plasma generator to enhance the interfacial bond strength and to optimize the plasma treatment condition. The plasma power, gas pressure, and treat time were varied to figure out any effect of those parameters on the morphology and mechanical strength of jute fibers, and the interfacial bond strength for a model composite with polypropylene resin. As the severity of plasma treatment was increased, the surface of jute fibers became rougher. Gas pressure was less effective in roughening of the surface compared with those of treat time and plasma power. Approximately 25% drop in tensile strength of jute fibers was observed for the parameters of treat time and plasma power, while little deterioration was found for gas pressure, with increasing the severity. Based on the interfacial shear strength (IFSS), the optimum plasma treatment condition was determined to be treat time of 30 s, plasma power of 40 W, and gas pressure of 30 mTorr.

계면접착력 향상을 위해 실린더형 RF 플라즈마 발생기를 이용하여 Jute fiber의 표면을 아르곤가스로 처리하였고 최적 처리조건을 설정하였다. 플라즈마 강도, 가스압력, 및 처리시간을 변경한 후 이러한 인자들이 황마섬유 표면모폴로지, 섬유 인장강도, 및 폴리프로필렌과의 모델복합체에서 계면접착강도에 미치는 영향을 조사하였다. 플라즈마 처리인자에 따라 황마섬유의 표면은 거칠어졌다. 가스압력의 영향은 처리시간 및 플라즈마 강도의 영향보다 다소 낮게 나타났다. 플라즈마 강도와 시간에 따라 황마섬유의 강도는 약 25% 감소한 반면, 가스압력의 영향은 크게 나타나지 않았다. 계면전단강도 (IFSS)를 기준으로 결정된 최적 플라즈마 처리조건은 처리시간 30 s, 전력 40 W, 가스압력 30 mTorr로 나타났다.

Keywords

References

  1. A. K. Bledzki and J. Gassan, "Composites reinforced with cellulose based fibres", Prog. Polym. Sci., 24, 221 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
  2. R. Karnani, M. Krishnan, and R. Narayan, "Biofiber-reinforced polypropylene composites", Polym. Eng. Sci., 37, 476 (1997). https://doi.org/10.1002/pen.11691
  3. T. M. Gowd, A.C.B. Naidu, and R. Chhay, "Some mechanical properties of untreated jute fabric-reinforced polyester composites", Compos. Part A, 30, 277 (1999). https://doi.org/10.1016/S1359-835X(98)00157-2
  4. A. C. Karmaker and J. A. Youngquist, "Injection molding of polypropylene reinforced with short jute fibers", J. Appl. Polym. Sci., 62, 1147 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961121)62:8<1147::AID-APP2>3.0.CO;2-I
  5. G. Krekel, U. J. Zielke, K. J. Hüttinger, and W. P. Hoffman, "The relevance of the surface structure and surface chemistry of carbon fibres in their adhesion to high temperature thermoplastics. Part III Interface adhesion and reinforcement effects", J. Mater. Sci., 29, 3984 (1994). https://doi.org/10.1007/BF00355958
  6. J. Harvey, C. Kozlowski, and P. M. A. Sherwood, "X-ray photoelectron spectroscopic studies of carbon fibre surfaces. Part 6 Pilot plant surface treatment and epoxy resin composites", J. Mater. Sci., 22, 1585 (1987). https://doi.org/10.1007/BF01132378
  7. C. A. Baillie and M. G. Bader, "Some aspects of interface adhesion of electrolytically oxidized carbon fibres in an epoxy-resin matrix", J. Mater. Sci., 29, 3822 (1994). https://doi.org/10.1007/BF00357355
  8. H.-T. Chiu and J.-S. Lin, "Electrochemical deposition of polypyrrole on carbon fibres for improved adhesion to the epoxy resin matrix", J. Mater. Sci., 27, 319 (1992).
  9. I.-C. Kim and T.-H. Yoon, "Enhanced interfacial adhesion of carbon fibers to vinyl ester resin using poly(arylene ether phosphine oxide) coatings as adhesion promoters", J. Adhes. Sci. Technol., 14, 545 (2000). https://doi.org/10.1163/156856100742735
  10. H. M. Kang, T. H. Yoon, M. Bump, and J. S. Riffle, "Effect of solubility and miscibility on the adhesion behavior of polymer- coated carbon fibers with vinyl ester resins", J. Appl. Polym. Sci., 79, 1042 (2001). https://doi.org/10.1002/1097-4628(20010207)79:6<1042::AID-APP70>3.0.CO;2-2
  11. J. J. Lesko, F. E. Swain, J. M. Cartwright, J. W. Chin, K. L. Reifsnider, D. A. Dillard, and J. P. Wightman, "Interphases Developed from Fiber Sizings and Their Chemical-Structural Relationship to Composite Compressive Performance", J. Adhes., 45, 43 (1994). https://doi.org/10.1080/00218469408026628
  12. S. D. Jenkins, G. T. Emmerson, P. T. McGrail, and R. M. Robinson, "Thermoplastic Sizing of Carbon Fibres in High Temperature Polyimide Composites", J. Adhes., 45, 15 (1994). https://doi.org/10.1080/00218469408026626
  13. E. M. Liston, "Plasma Treatment for Improved Bonding: A Review", J. Adhes., 30, 199 (1989). https://doi.org/10.1080/00218468908048206
  14. G. J. Farrow and C. Jones, "The Effect of Low Power Nitrogen Plasma Treatment of Carbon Fibres on the Interfacial Shear Strength of Carbon Fibre/Epoxy Composites", J. Adhes., 45, 29 (1994). https://doi.org/10.1080/00218469408026627
  15. G. J. Farrow and K. E. Atkinson, N. Fluck and C. Jones, "Effect of low-power air plasma treatment on the mechanical properties of carbon fibres and the interfacial shear strength of carbon fibre-epoxy composites", Surf. Interface Anal., 23, 313 (1995). https://doi.org/10.1002/sia.740230507
  16. B. Okhuysen, R. C. Cochran, R. E. Allred, F. Sposili, and T. M. Donnellan, "Interface/Interphase Studies in Epoxy Matrix Composites", J. Adhes., 45, 3 (1994). https://doi.org/10.1080/00218469408026625
  17. S. Mujin, H. Baorong, W. Yisheng, T. Ying, H. Weiqui, and D. Youxian, "The surface of carbon fibres continuously treated by cold plasma", Compos. Sci. Technol., 34, 353 (1989). https://doi.org/10.1016/0266-3538(89)90004-3
  18. B. S. Jin, K. H. Lee, and C. R. Choe, "Properties of carbon fibers modified by oxgen plasma", Polym. Int., 34, 181 (1994). https://doi.org/10.1002/pi.1994.210340209
  19. G. Dagli and N.-H. Sung, "Properties of carbon/graphite fibers modified by plasma polymerization", Polym. Compos., 10, 109 (1989). https://doi.org/10.1002/pc.750100208
  20. N. Dilsiz, E. Ebert, W. Weisweiler, and G. J. Akovali, "Effect of Plasma Polymerization on Carbon Fibers Used for Fibers/Epoxy Composites", J. Colloid Interf. Sci., 170, 241 (1995) https://doi.org/10.1006/jcis.1995.1093
  21. S. Feih and P. Schwartz, "Modification of the carbon fiber/ matrix interface using gas plasma treatment with acetylene and oxygen", J. Adhes. Sci. Technol., 12, 523 (1998). https://doi.org/10.1163/156856198X00209
  22. L. Y. Yuan, S. S. Shyu, and J. Y. Lai, "Plasma surface treatments of carbon fibers. Part 2: Interfacial adhesion with poly(phenylene sulfide)", Compos. Sci. Technol., 45, 9 (1992). https://doi.org/10.1016/0266-3538(92)90117-L
  23. W. Weisweiler, in: NATO ASI Series, Series. E, No. 230, Interfacial Interactions in Polymeric Composites, G. Akovali (Ed.), p. 269. Kluwer Academic, Boston (1993).
  24. Y. L. Zou and A. N. Netravali, "Ethylene/ ammonia plasma polymer deposition for controlled adhesion of graphite fibers to PEEK", J. Adhes. Sci. Technol., 9, 1505 (1995). https://doi.org/10.1163/156856195X00158
  25. N. Lopattananon, A. P. Kettle, D. Tripathi, A. J. Beck, E. Duval, R. M. France, R. D. Short, and F. R. Jones, "Interface molecular engineering of carbon-fiber composites", Compos. Part A, 30, 49 (1999). https://doi.org/10.1016/S1359-835X(98)00109-2
  26. G. Mathew, M.-Y. Huh, J. M. Rhee, M.-H. Lee, and C. Nah, "Improvement of properties of silica-filled styrene-butadiene rubber composites through plasma surface modification of silica", Polym. Adv. Technol., 15, 400 (2004). https://doi.org/10.1002/pat.482
  27. S. G. Lee, S.-S. Choi, W. H. Park, and D. Cho, "Characterization of surface modified flax fibers and their biocomposites with PHB", Macromol. Symp., 197, 89 (2003). https://doi.org/10.1002/masy.200350709
  28. X. Yuan, K. Jayaraman, and D. Bhattacharyya, "Mechanical properties of plasma-treated sisal fibre-reinforced polypropylene composites", J. Adhes. Sci. Tech., 18, 1027 (2004). https://doi.org/10.1163/1568561041257478

Cited by

  1. Plasma Treatment in Textile Industry vol.12, pp.2, 2014, https://doi.org/10.1002/ppap.201400052
  2. Characterization of Physical, Mechanical and Chemical Properties of Quiscal Fibres: The Influence of Atmospheric DBD Plasma Treatment vol.35, pp.5, 2015, https://doi.org/10.1007/s11090-015-9630-0
  3. Searching for Natural Conductive Fibrous Structures via a Green Sustainable Approach Based on Jute Fibers and Silver Nanoparticles vol.10, pp.1, 2018, https://doi.org/10.3390/polym10010063