DOI QR코드

DOI QR Code

Preparation and Flame Retardancy of Poly(benzoxazole imide) Having Trifluoromethyl Group in the Main Chain

주사슬에 Trifluoromethyl 그룹을 갖는 Poly(benzoxazole imide)의 제조 및 난연 특성

  • Yeom, Jin-Seok (Fuelcell Material Research Group, Korea Research Institute of Chemical Technology) ;
  • Choi, Jae-Kon (Dept. of Polymer Science & Engineering, Chosun University) ;
  • Lee, Chang-Hoon (Dept. of Polymer Science & Engineering, Chosun University)
  • 염진석 (한국 화학 연구원 연료전지소재연구그룹) ;
  • 최재곤 (조선대학교 응용화학소재공학과) ;
  • 이창훈 (조선대학교 응용화학소재공학과)
  • Received : 2012.11.17
  • Accepted : 2012.11.26
  • Published : 2012.12.31

Abstract

A series of poly(hydroxyamide)s (PHAs) having trifluoromethyl group were prepared by direct polycondensation of aromatic diimide-dicarboxylic acids with 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane by thionyl chloride and triethyl amine in N-methyl-2-pyrrolidinone (NMP). The PHAs exhibited inherent viscosity in the range of 0.54-0.96 dL/g at $35^{\circ}C$ in DMAc solution. All PHAs were readily soluble in a variety of organic solvents, whereas the polybenzoxazoles (PBOs) were quite insoluble except partially soluble in sulfuric acid. PHAs were converted to PBOs by thermal cycling reaction with heat of endotherm. The maximum weight loss temperature of the PHAs occurred in the range of $559-567^{\circ}C$. The PBOs showed relatively high char yields in the range of 47-59%. Pyrolysis Combustion Flow Calorimeter (PCFC) results of the PBOs showed 12-19 W/g heat release rate (HRR), and 2.7-3.6 kJ/g total heat release (total HR). The HRR of PBO 1 showed the lowest value of 12 W/g, which was 37% lower than that of PBO 3 (19 W/g).

2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane 와 방향족 디이미드-디카르복실산을 thionyl chloride, triethyl amine 및 NMP 하에서 직접 중축합하여 trifluoromethyl group을 포함하는 일련의 poly(hydroxyamide)s(PHAs)를 제조 하였다. PHAs은 $35^{\circ}C$ DMAc 용액에서 0.54-0.96 dL/g의 고유점도를 보였다. 모든 PHAs은 여러 종류의 유기용매에 쉽게 용해되었으나, PBOs은 황산에 부분적으로 용해되는 것을 제외하고, 전혀 용해되지 않았다. PHAs은 열적고리화 반응에 의해서 흡열과 함께 PBOs로 전환되었다. PHAs의 최대 중량손실온도는 $559-567^{\circ}C$의 영역을 보였고, poly(benzoxazole imide)s(PBOs)은 47-59%의 비교적 높은 char 수득율을 보였다. PBOs의 Pyrolysis Combustion Flow Calorimeter(PCFC) 결과에서 12-19 W/g의 HRR 과 2.7-3.6 kJ/g의 total HR을 보였다. PBO 1의 HRR은 PBO 3 의 HRR (19 W/g)보다 37 % 낮은 12 W/g의 가장 낮은 값을 보였다.

Keywords

References

  1. H. Domininghaus, "Plastics for Engineers", p. 543, Hanser, New York, 1993.
  2. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius,"Polyimides", p. 271, Consultants bureau, New York, 1988.
  3. S. Zhang, Y. Li, D. Yin, X. Wang, X. Zhao, Y. Shao, and S. Yang, "Study on Synthesis and Characterization of Novel Polyimides Derived from 2,6-Bis(3-amino-benzoyl)pyridine", Eur. Polym. J., 46, 1307 (2010). https://doi.org/10.1016/j.eurpolymj.2010.03.007
  4. H. S. Li, J. G. Liu, L. Fan, and S. Y. Yang,"Polyimides and Other High Temperature Polymers", ed. by K. L. Mittal, p. 3, VSP, Leiden, Vol 4, 2007.
  5. C. K. Ku, C. H. Ho, T. S. Chen, and Y. D. Lee, "Polyimides and Other High Temperature Polymers", ed. by K. L. Mittal, p. 21, VSP, Leiden, Vol 4, 2007.
  6. M. S. Butt, Z. Akhtar, M. Zafar-uz-Zaman, and A. Munir, "Synthesis and Characterization of Some Novel Aromatic polyimides", Eur. Polym. J., 41, 1638 (2005). https://doi.org/10.1016/j.eurpolymj.2005.01.016
  7. S. Mehdipour-Ataei, "Novel Thermally Stable Poly(sulfone ether ester imide)s", Eur. Polym. J., 41, 91 (2005) https://doi.org/10.1016/j.eurpolymj.2004.07.001
  8. S. Y. Wu, S. M. Yuen, C. C. M. Ma, and Y. L. Hung, "Synthesis and properties of Aromatic Polyimide, Poly(benzoxazole imide), and Poly(benzoxazole amide imide)", J. Appl. Polym. Sci., 113, 2301 (2009). https://doi.org/10.1002/app.30212
  9. B. Y. Ryu, D. S. Yoon, S. K. Choi, J. K. Choi, and B W. Jo, "Polybenzoxazole Precursors with Dimethylphenoxy/Alkoxy Pendent Groups for Flame Retarding Applications", J. Korean Ind. Eng. Chem., 12, 700 (2001).
  10. G. S. Liou, M. Maruyama, M. A. Kakimoto, and Y. Imai, "Preparation and Aro-matic Polyamides from 2,2'-Bis(p-aminophenoxy)- 1,1'-Binaphthyl and Aromatic Dicarboxylic Acids", J. Polym. Sci. Part A: Polym. Chem., 31, 2499 (1993). https://doi.org/10.1002/pola.1993.080311010
  11. S. H. Hsiao and C. P. Yang, "Preparation of Polyamide-Imides Via the Phosph-orylation Reaction. II. Synthesis of Wholly Aromatic Polyamide-Imides from N-[p-(or m-)Carboxyphenyl] trimellitimides and Various Aromatic Diamines", J. Polym. Sci. Part A: Polym. Chem., 28, 1149 (1990). https://doi.org/10.1002/pola.1990.080280515
  12. H. Behniafar and A. banihashemi, "Synthesis and Chacterization of New Aro-matic Poly(amide-imide)s Based on 4-aryl-2,6- bis(4-trimellitimidophenyl)-pyridines", Polym. Int. 53, 2020 (2004). https://doi.org/10.1002/pi.1620
  13. R. N. Walters, and R. E. Lyon, "Molar Group Contributions to Polymer Flammability" J. Appl. Polym. Sci., 87, 548 (2003). https://doi.org/10.1002/app.11466
  14. R. E. Lyon and R. N. Walters, "Pyrolysis Combustion Flow Calorimetry", J. Anal. Appl. Pyrolysis., 71, 27 (2004). https://doi.org/10.1016/S0165-2370(03)00096-2
  15. D. S. Yoon, J. K. Choi, and B. W. Jo, "Syntheses and Characterization of PBO Precursors Containing Dimethylphenoxy and/or MPEG Pendent Groups", Polymer(Korea), 29, 493 (2005).
  16. S. H. Hsiao and Y. H. Huang, "A New Class of Aromatic Polybenzoxazoles Containing Ortho-Phenylenedioxy Groups", Eur. Polym. J., 40, 1127 (2004). https://doi.org/10.1016/j.eurpolymj.2004.01.011
  17. H. Zhang, R. J. Farris, and P. R. Westmoreland, "Low Flammability and Thermal Decomposition Behavior of Poly (3,3'-dihydroxybiphenylisophthalamide) and Its Derivatives", Macromolecules, 36, 3944 (2003). https://doi.org/10.1021/ma021764x
  18. J. H. Chang, M. J. Chen, and R. J. Farris, "Effect of Heat Treatment on the Thermal and Mechanical Properties of a Precursor Polymer: Polyhydroxyamide", Polymer, 39, 5649 (1998). https://doi.org/10.1016/S0032-3861(97)10364-0
  19. D. H. Baik, E. K. Kim, and M. K. Kim, "Preparation of New Heat-resistant Fiber Materials using Polymeric Precursors to Polybenzoxazoles(I)", J. Korean Fiber Society, 40, 13 (2003).
  20. M. P. Stevens, "Polymer Chemistry an Introduction", 3rd Ed. P. 375, Oxford University Press Inc., New York, 1999.
  21. S. Wang, Y. Hu, Z. Li, Z. Whang, Y. Zhuang, Z. Chen, and W. Fan, "Flammability and Phase-transition Studies of Nylon 6/Montmorillonite Nanocomposites", Colloid Polym. Sci., 281, 951 (2003). https://doi.org/10.1007/s00396-002-0858-x
  22. J. Y. Sohn, S. C. Moon, D. S. Yoon, and J. K. Choi, "Preparation and Properties of Aromatic Polybenzoxazoles with High Char Yields", Elastomer, 42, 238 (2007).
  23. H. J. Kim, J. K. Choi, B. W. Jo, J. H. Chang, and R. J. Farris, "Flame Retarding Properties of phosphous Containing Poly(amic acid)", Korea Polym. J., 6, 84 (1998).
  24. J. K. Choi, J. Zilberman, and R. J. Farris, "Flame Retarding Properties of Kevla and Nomex Fibers", CUMIRP Report (Univ. Mass.) Massachusetts, U.S.A., Part 1 (2006).

Cited by

  1. Synthesis and Thermal Properties of Aromatic Poly(o-hydroxyamide)s Containing Phenylene Diimide Unit vol.14, pp.11, 2013, https://doi.org/10.5762/KAIS.2013.14.11.6029