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Abstract

The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data.

In the numerical approximation of likelihood function the normality is assumed for the random effects dis-

tribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality

assumption. We may also encounter departures from the distributional assumption on the response variable.

It would be interesting to investigate the impact on the estimates of parameters under misspecification of

distributions; however, there has been limited researche on these topics. We study the sensitivity or ro-

bustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying

distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider

the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the

negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the

empirical coverage probabilities of parameters and biases of MLEs of GLMM.

Keywords: Generalized linear mixed model, random effects distribution, overdispersion, negative bino-

mial responses, Kullback-Leibler information, coverage probability, bias.

1. Introduction

Generalized linear mixed models are a very flexible approach for the clustered or longitudinal

outcomes of categorical responses. GLMM belongs to a class of hierarchical models that are par-

ticularly useful to structure multiple sources of variation associated with covariates, and variation

attributable to unmeasured factors of subject effects. There have been significant computational

advances in the routine fitting of various kinds of GLMMs via commercial packages such as SAS

and R.

The estimation of regression parameters is based on the maximum likelihood theory and assumes

that the underlying probability model is correctly specified. However, there has been limited works
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on the sensitivity of estimates of parameters when the underlying assumptions of GLMM are vi-

olated. Some research showed that the results obtained from these models are not always robust

against departures from the assumptions on which these models are based. In GLMM for counts

data we usually assume a Poisson distribution for outcomes and also assume normal distribution

for the random effects associated with subjects. We sometimes encounter departures from these

distributional assumptions. Some researchers have studied the effects on the regression coefficients

when the underlying normal assumption of random effects is violated. Neuhaus et al. (1992) studied

the magnitude of bias of logistic-normal GLMM with misspecified mixing distributions, and found

that the magnitude appears to be small even when the regression coefficients are asymptotically

biased. However, Molenberghs et al. (1998) discussed the impact of misspecification in the respect

of test performance. Recently, Litiere et al. (2007) studied the impact of misspecifying the random

effects distribution on Type I and Type II errors in the logistic-normal random intercepts models.

Similarly, Litiere et al. (2008) investigated the impact of misspecified random effect distribution in

the GLMM of binary responses. Furthermore, Alonso et al. (2010) suggested a testing procedure

for misspecification in logistic-normal GLMM.

In this paper we investigate the effects of misspecification on the estimates of regression coefficients

in GLMM of count responses. To check the sensitivity under departures from normality we con-

sider four kinds of random effect distributions such as normal, gamma, mixture of normals, and

exponential distributions. As a second point of the paper we are also interested in the effects of

misspecified distribution as Poisson whereas the true distribution is negative binomial with overdis-

persion. This paper consists of following sections. In Section 2 we briefly review GLMM for count

responses, and explain the asymptotic normality of MLEs under misspecified models in relation to

the Kullback-Leibler information criterion. In Section 3, through a Monte Carlo study we inves-

tigate the impact on estimates of parameters in terms of empirical coverage probability and bias.

Finally we summarize the paper with comments on further research.

2. Generalized Linear Mixed Models for Count Responses

2.1. Poisson-Normal GLMM

Let {yij ,xij}, i = 1, 2, . . . , n, j = 1, 2, . . . , Ti be a clustered data consisting of n subjects having

Ti elementary units, where yij denotes count responses and xij = (1, x1ij , . . . , xpij)
′ is (p + 1)-

dimensional covariate values including constant. Given random subject effects ui, the random in-

tercepts GLMM for count responses is represented in terms of log link and mean µij = E(yij |ui,xij)

as

log(µij) = x′
ijβ + ui, (2.1)

where β = (β0, β1, . . . , βp)
′. We simply let ηij = x′

ijβ be the fixed part of linear predictor in (2.1).

We usually assume that count responses yij are Poisson distributed and the random effects ui are

independent and N(0, σ2), and in this case we call it the Poisson-normal GLMM.

The likelihood function L(θ) with θ = (β′, σ)′ is obtained by integrating out with respect to the

density of random effects.

L(θ) =

n∏
i=1

∫
f(yi|ui)f(ui)dui, (2.2)
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where f(yi|ui) is the Poisson density of yi = (yi1, . . . , yiTi)
′ with mean µi = (µi1, . . . , µiTi)

′ char-

acterized by (2.1) and f(ui) is the density of random effects ui. To find the MLE of θ we need

a numerical approximation of (2.2) and then a maximization step. An adaptive Gaussian quadra-

ture or Laplacian method are commonly applied to approximate the marginal integral numerically.

The random effects ui are usually predicted by empirical Bayes method. Under some regularity

conditions, the MLE θ̂ satisfies
√
n-consistency and the asymptotic normality. We may refer to

McCullagh and Nelder (1989), Breslow and Clayton (1993), and Agresti (2002) for the general dis-

cussions on GLMM. There are many available software fitting GLMM, for example, NLMIXED in

SAS and glmmML in R can be used to fit Poisson-normal GLMM.

2.2. Maximum likelihood estimation under misspecification

Let F (y, θ) be an assumed probability distribution having a density f(y, θ), and also let g(y) be

a true probability density with its probability distribution G(·). The Kullback-Leibler information

criterion is defined as

I(g; f, θ) = E

(
log

[
g(y)

f(y, θ)

])
, (2.3)

where E(·) is taken with respect to the true distribution G(·). Intuitively, I(g; f, θ) measures the

ignorance about the true model. The I(g; f, θ) has the important property of I(g; f, θ) ≥ 0 for

all θ ∈ Θ, where Θ is a subset of q-dimensional Euclidean space. The probability density under

GLMM is determined from the conditional density of yij given random effects ui and the random

effects distribution itself. Hereafter the probability distributions F (y, θ) or G(y) is associated with

the marginal distribution of yij mentioned above. They may be misspecified in the respect of either

the conditional distribution of yij or the random effects distribution.

According to White (1982) the MLEs θ̂ under f(y, θ) has the asymptotic properties: under mild

regularity conditions, θ̂n → θ∗ almost surely as n → ∞, where θ∗ denotes the value minimizing

I(g; f, θ) of (2.3). Furthermore, θ̂n has the asymptotic normality

√
n(θ̂n − θ∗) → N(0, Vθ∗), (2.4)

where Vθ∗ is a certain covariance matrix depending on θ∗. In particular, when G(y) = F (y, θ0)

for some θ0 ∈ Θ, that is, if the probability model is correctly specified for θ0, then the MLE is

consistent estimator of θ0. As commented by White (1982) we should be cautious about the fact

that the correct specification of the probability model is only a sufficient condition but by no means

necessary. As discussed by Heagerty and Kurland (2001) the θ∗ can equivalently be obtained as a

solution of

lim
n
E

[
n∑

i=1

∂

∂θ
log f(yi, θ)|θ∗

]
= 0. (2.5)

Our interest is whether θ∗ still equals θ0 when the underlying distributions of the random effects or

the outcomes are misspecified, and, if not, it needs to be studied on the magnitude of the difference

between θ∗ and θ0. In a later chapter we are to investigate the impact on MLEs in the respects of

empirical coverage probabilities and biases.
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Table 3.1. Coverage probabilities of correctly specified Poisson-normal GLMM when random effects distribution is ui ∼ N(0, σ2)

n T σ 1− α β0 β1 β2 σ

50

3

0.5

0.90 0.895 0.900 0.891 0.854

0.95 0.951 0.950 0.938 0.912

0.99 0.984 0.992 0.985 0.969

1.0

0.90 0.891 0.896 0.884 0.843

0.95 0.928 0.944 0.934 0.904

0.99 0.984 0.992 0.983 0.958

2.0

0.90 0.884 0.914 0.881 0.771

0.95 0.937 0.956 0.940 0.850

0.99 0.983 0.996 0.986 0.936

5

0.5

0.90 0.900 0.902 0.890 0.865

0.95 0.947 0.952 0.941 0.915

0.99 0.983 0.995 0.988 0.975

1.0

0.90 0.876 0.892 0.886 0.837

0.95 0.935 0.938 0.944 0.907

0.99 0.983 0.995 0.983 0.964

2.0

0.90 0.884 0.899 0.882 0.763

0.95 0.937 0.945 0.941 0.840

0.99 0.983 0.991 0.980 0.935

100

3

0.5

0.90 0.913 0.896 0.909 0.868

0.95 0.956 0.948 0.952 0.933

0.99 0.990 0.990 0.987 0.977

1.0

0.90 0.899 0.907 0.895 0.851

0.95 0.959 0.955 0.953 0.905

0.99 0.989 0.993 0.988 0.971

2.0

0.90 0.895 0.899 0.901 0.806

0.95 0.947 0.950 0.946 0.869

0.99 0.987 0.985 0.988 0.942

5

0.5

0.90 0.888 0.891 0.880 0.878

0.95 0.946 0.945 0.938 0.931

0.99 0.988 0.997 0.991 0.978

1.0

0.90 0.891 0.904 0.898 0.849

0.95 0.944 0.950 0.944 0.907

0.99 0.985 0.991 0.988 0.967

2.0

0.90 0.897 0.903 0.894 0.777

0.95 0.946 0.948 0.947 0.846

0.99 0.990 0.991 0.987 0.940

3. A Monte Carlo Study

3.1. Design of experiments

We consider a GLMM for clustered count responses defined by

log(µij) = β0 + β1x1ij + β2x2ij + ui, i = 1, 2, . . . , n; j = 1, 2, . . . , Ti, (3.1)

where we let β0 = 1.5, β1 = 1.0, β2 = −1.0. For each subject i the covariate variable x1ij is randomly

generated Ti times from uniform distribution over (0, 1), and the covariate x2ij is assigned to be 0

or 1 with respective probabilities 1/2 for all elementary units of each subject. The x1ij is sometimes

called the within-subject variable and x2ij is the subject-level covariate. The number of elementary
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Table 3.2. Coverage probabilities of misspecified Poisson-normal GLMM when random effects distribution is ui ∼ Gam(σ2, 1)

n T σ 1− α β0 β1 β2 σ

50

3

0.5

0.90 0.920 0.916 0.876 0.469

0.95 0.959 0.955 0.944 0.542

0.99 0.993 0.987 0.989 0.674

1.0

0.90 0.909 0.906 0.881 0.647

0.95 0.940 0.953 0.939 0.712

0.99 0.980 0.988 0.988 0.833

2.0

0.90 0.890 0.901 0.907 0.655

0.95 0.945 0.944 0.943 0.754

0.99 0.981 0.992 0.983 0.866

5

0.5

0.90 0.904 0.890 0.887 0.452

0.95 0.958 0.946 0.953 0.503

0.99 0.991 0.991 0.992 0.626

1.0

0.90 0.890 0.899 0.875 0.619

0.95 0.940 0.952 0.927 0.691

0.99 0.982 0.992 0.980 0.804

2.0

0.90 0.892 0.901 0.893 0.659

0.95 0.943 0.953 0.940 0.730

0.99 0.977 0.994 0.983 0.850

100

3

0.5

0.90 0.915 0.894 0.892 0.426

0.95 0.963 0.947 0.943 0.499

0.99 0.993 0.993 0.988 0.617

1.0

0.90 0.909 0.909 0.883 0.576

0.95 0.945 0.956 0.941 0.652

0.99 0.993 0.993 0.987 0.783

2.0

0.90 0.889 0.904 0.905 0.617

0.95 0.945 0.955 0.941 0.720

0.99 0.987 0.994 0.981 0.857

5

0.5

0.90 0.897 0.895 0.882 0.399

0.95 0.951 0.940 0.943 0.481

0.99 0.988 0.987 0.991 0.600

1.0

0.90 0.904 0.895 0.891 0.593

0.95 0.947 0.945 0.946 0.663

0.99 0.987 0.993 0.988 0.790

2.0

0.90 0.896 0.909 0.900 0.620

0.95 0.950 0.940 0.946 0.716

0.99 0.989 0.990 0.984 0.862

units Ti is taken to be the same for all subjects, that is, Ti = T for all i = 1, 2, . . . , n. We consider two

cases of n = 50, 100, and also we take T = 3, 5. As random effects distributions for ui we consider

the normal N(0, σ2), gamma Gam(σ2, 1), normal mixtures (1/2)N(−2, σ2) + (1/2)N(2, σ2), and

exponential Exp(σ), where σ = 0.5, 1.0, 2.0. We standardize the generated random variates of ui

for all cases of random effects distributions.

By fitting the GLMM in (3.1) we obtain the MLEs of β′s and σ with their standard errors. The

approximate confidence intervals for the parameters can also be obtained using the asymptotic

normality of MLEs. We find the empirical coverage probability of confidence interval for each

parameter by counting the number of confidence intervals containing the true parameter among

1,000 replications of the simulation study.
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Table 3.3. Coverage probabilities of misspecified Poisson-normal GLMM when random effects distribution is ui ∼ Exp(σ)

n T σ 1− α β0 β1 β2 σ

50

3

0.5

0.90 0.929 0.912 0.919 0.637

0.95 0.963 0.965 0.951 0.739

0.99 0.981 0.990 0.990 0.878

1.0

0.90 0.935 0.900 0.849 0.647

0.95 0.945 0.945 0.935 0.732

0.99 0.970 0.995 0.980 0.827

2.0

0.90 0.883 0.895 0.856 0.513

0.95 0.929 0.953 0.924 0.598

0.99 0.981 0.990 0.983 0.759

5

0.5

0.90 0.890 0.872 0.912 0.716

0.95 0.932 0.921 0.951 0.774

0.99 0.979 0.983 0.985 0.861

1.0

0.90 0.856 0.926 0.853 0.577

0.95 0.935 0.983 0.881 0.634

0.99 0.975 0.996 0.958 0.729

2.0

0.90 0.800 0.829 0.854 0.587

0.95 0.912 0.888 0.915 0.676

0.99 0.972 0.973 0.973 0.700

100

3

0.5

0.90 0.894 0.910 0.909 0.624

0.95 0.894 0.910 0.909 0.624

0.99 0.987 0.996 0.988 0.824

1.0

0.90 0.943 0.878 0.902 0.567

0.95 0.965 0.907 0.934 0.685

0.99 0.995 0.964 0.994 0.834

2.0

0.90 0.864 0.907 0.947 0.531

0.95 0.953 0.934 0.971 0.602

0.99 0.981 0.997 0.997 0.736

5

0.5

0.90 0.940 0.898 0.833 0.688

0.95 0.956 0.949 0.872 0.728

0.99 0.997 0.993 0.993 0.829

1.0

0.90 0.897 0.901 0.883 0.593

0.95 0.945 0.937 0.939 0.699

0.99 0.979 0.988 0.985 0.832

2.0

0.90 0.886 0.907 0.909 0.492

0.95 0.937 0.963 0.944 0.574

0.99 0.991 0.992 0.985 0.709

We define the empirical relative bias of true parameter θ0 as

¯̂
θ − θ0
θ0

× 100, (3.2)

where
¯̂
θ denotes the average of MLE θ̂ over 1,000 replications of simulations. The empirical relative

bias approximates true relative bias for the parameter θ0. Next, we investigate the impact on

MLEs when response distribution is misspecified as Poisson whereas the true distribution is negative

binomial having overdispersion.

3.2. Results

Table 3.1 shows that coverage probabilities for fixed parameters are moderately well attained when
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Table 3.4. Coverage probabilities of misspecifed Poisson-normal GLMM when random effects distribution is ui ∼
(1/2)N(−2, σ2) + (1/2)N(2, σ2)

n T σ 1− α β0 β1 β2 σ

50

3

0.5

0.90 0.873 0.878 0.889 0.940

0.95 0.938 0.945 0.943 0.968

0.99 0.983 0.988 0.986 0.993

1.0

0.90 0.890 0.915 0.871 0.952

0.95 0.945 0.958 0.933 0.978

0.99 0.988 0.993 0.976 0.995

2.0

0.90 0.883 0.897 0.893 0.832

0.95 0.939 0.944 0.952 0.913

0.99 0.988 0.993 0.984 0.970

5

0.5

0.90 0.876 0.901 0.892 0.976

0.95 0.943 0.949 0.938 0.990

0.99 0.994 0.993 0.989 0.994

1.0

0.90 0.870 0.901 0.892 0.954

0.95 0.929 0.949 0.935 0.977

0.99 0.985 1.000 0.990 0.997

2.0

0.90 0.925 0.964 0.855 0.785

0.95 0.926 0.965 0.893 0.856

0.99 0.998 1.000 0.963 0.928

100

3

0.5

0.90 0.873 0.890 0.889 0.955

0.95 0.923 0.951 0.932 0.982

0.99 0.994 0.989 0.993 0.997

1.0

0.90 0.913 0.858 0.857 0.928

0.95 0.992 0.997 0.927 0.995

0.99 1.000 0.999 0.999 1.000

2.0

0.90 0.893 0.909 0.896 0.853

0.95 0.946 0.956 0.942 0.922

0.99 0.993 0.993 0.980 0.960

5

0.5

0.90 0.856 0.880 0.880 0.988

0.95 0.923 0.928 0.937 1.000

0.99 0.985 0.979 0.994 1.000

1.0

0.90 0.902 0.914 0.894 0.951

0.95 0.949 0.955 0.942 0.991

0.99 0.982 0.989 0.985 0.997

2.0

0.90 0.870 0.912 0.877 0.826

0.95 0.918 0.944 0.931 0.891

0.99 0.991 0.988 0.969 0.978

the random effects distribution is correctly specified as normal; however, the coverage probabilities

for the random component σ are slightly smaller than the nominal level. The performance of con-

fidence intervals improves as sample size increases. Even when the true random effects distribution

is Gam(σ2, 1) of Table 3.2 and we incorrectly fit Poisson-normal GLMM, the nominal confidence

levels for fixed parameters are well attained; however, the coverage errors of confidence intervals for

σ are large irrespective of sample sizes. In the case of Exp(σ) random effects, we see similar results

as given in Table 3.3. But as shown in Table 3.4 for the mixture of two normal distributions, the

coverage probabilities for fixed effects and variance component have similar patterns as the normal

random effects distribution of Table 3.1.

We find that the MLEs for fixed parameters are insensitive to misspecified random effects distribu-
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Table 3.5. Relative biases of parameter estimates in Poisson-normal GLMM according to random effects distributions

ui n T σ β0 β1 β2 σ

N(0, σ2)

50

3

0.5 −0.38 −0.27 −0.70 −3.73

1.0 −0.74 0.03 −1.61 −3.08

2.0 −1.36 0.04 −3.17 −3.06

5

0.5 −0.31 −0.05 −0.54 −3.39

1.0 −0.91 0.43 −1.46 −2.68

2.0 −1.58 −0.12 −3.70 −2.80

100

3

0.5 −0.11 0.31 0.22 −1.72

1.0 0.05 −0.16 0.23 −1.33

2.0 −0.08 0.06 0.57 −1.42

5

0.5 0.02 0.02 0.20 −1.57

1.0 −0.14 0.19 0.02 −1.24

2.0 −0.07 −0.05 0.46 −1.21

Gam(σ2, 1)

50

3

0.5 −1.33 0.24 0.47 7.24

1.0 −1.51 0.02 3.29 4.01

2.0 −4.68 −0.20 1.20 2.59

5

0.5 −1.02 0.49 0.09 3.60

1.0 −0.79 −0.06 2.59 1.47

2.0 −3.46 0.03 −0.16 0.95

100

3

0.5 −1.38 0.24 0.86 11.70

1.0 −2.16 −0.33 2.36 5.68

2.0 −4.69 0.02 2.38 4.00

5

0.5 −0.83 0.20 0.74 7.19

1.0 −1.66 0.09 1.29 3.04

2.0 −3.25 −0.06 2.30 2.45

Exp(σ)

50

3

0.5 −1.17 0.67 2.06 8.33

1.0 −0.75 −0.04 3.92 5.37

2.0 −6.66 0.22 7.36 1.84

5

0.5 0.58 −2.16 2.94 5.12

1.0 −1.23 −0.43 1.17 4.14

2.0 −4.92 −1.30 6.03 0.16

100

3

0.5 −0.94 0.24 1.74 9.00

1.0 −1.94 −1.33 0.59 6.87

2.0 −7.23 −0.14 5.48 5.67

5

0.5 −0.31 0.18 1.73 6.75

1.0 −1.08 −0.06 2.24 3.07

2.0 410.77 0.01 42.23 3336.73

1
2
N(−2, σ2) + 1

2
N(2, σ2)

50

3

0.5 −0.61 0.80 −1.17 −3.35

1.0 −0.84 0.80 −1.54 −0.20

2.0 −0.42 −0.41 −3.61 −0.73

5

0.5 0.28 0.10 0.65 −2.51

1.0 −0.10 0.21 −0.45 −0.94

2.0 −3.34 −0.99 −16.41 −1.31

100

3

0.5 −0.11 0.06 −1.22 −1.78

1.0 5.57 0.88 3.00 −0.08

2.0 −0.72 −0.34 1.35 0.50

5

0.5 −0.15 0.65 0.37 −1.32

1.0 −1.33 0.15 0.79 1.26

2.0 −1.52 0.01 1.01 −0.09
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Table 3.6. Coverage probabilities of misspecified Poisson-normal GLMM when responses are negative-binomial with overdispersion
parameter ϕ and ui ∼ N(0, σ2)

n ϕ σ 1− α β0 β1 β2 σ

50

3

0.5

0.90 0.716 0.570 0.862 0.381

0.95 0.823 0.667 0.918 0.550

0.99 0.918 0.762 0.975 0.832

1.0

0.90 0.742 0.380 0.904 0.825

0.95 0.808 0.456 0.947 0.891

0.99 0.942 0.566 0.984 0.971

2.0

0.90 0.780 0.145 0.834 0.761

0.95 0.853 0.146 0.951 0.878

0.99 0.975 0.173 0.978 0.994

5

0.5

0.90 0.543 0.254 0.878 0.001

0.95 0.630 0.277 0.924 0.001

0.99 0.761 0.395 0.966 0.034

1.0

0.90 0.553 0.208 0.932 0.289

0.95 0.670 0.269 0.965 0.391

0.99 0.779 0.365 0.991 0.648

2.0

0.90 0.646 0.078 0.894 0.756

0.95 0.700 0.096 0.952 0.860

0.99 0.816 0.127 0.988 0.967

100

3

0.5

0.90 0.705 0.535 0.899 0.165

0.95 0.786 0.600 0.956 0.248

0.99 0.898 0.731 0.997 0.488

1.0

0.90 0.689 0.358 0.908 0.775

0.95 0.752 0.391 0.961 0.881

0.99 0.906 0.530 0.989 0.961

2.0

0.90 0.687 0.134 0.900 0.774

0.95 0.783 0.148 0.957 0.851

0.99 0.908 0.188 0.985 0.938

5

0.5

0.90 0.341 0.287 0.888 0.000

0.95 0.409 0.333 0.929 0.000

0.99 0.577 0.441 0.988 0.000

1.0

0.90 0.426 0.128 0.901 0.061

0.95 0.496 0.178 0.945 0.071

0.99 0.643 0.244 0.981 0.160

2.0

0.90 0.525 0.084 0.949 0.641

0.95 0.602 0.091 0.980 0.757

0.99 0.730 0.111 0.995 0.947

tions in general but the coverage probabilities are very sensitive to the misspecification of random

effects of gamma and exponential distributions that are not symmetric but skewed. Biases of MLEs

given in Table 3.5 have similar patterns as the coverage probabilities for each random effects dis-

tribution. Biases of fixed effects estimates are small in general when random effects distribution is

correctly specified as normal or misspecified as a mixture of normal distributions. Biases for σ are

a little more severe than those of fixed effects but decreases as sample size increases. When true

random effects distribution is Gam(σ2, 1) or Exp(σ) the performance of MLEs are not good. The

random effects ui’s generated from Exp(σ) tend to have large variability as the σ increases; subse-

quently, the asymptotic properties of MLEs seem to worsen in respect to low coverage probabilities

and the relative biases given in Table 3.3 and Table 3.5, respectively. We also comment that there
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Table 3.7. Relative biases of misspecified Poisson-normal GLMM when responses are negative-binomial with overdispersion
parameter ϕ and ui ∼ N(0, σ2)

n ϕ σ β0 β1 β2 σ

50

0.5

0.5 −6.69 1.59 −0.80 28.99

1.0 −4.86 −2.68 2.00 5.03

2.0 0.07 −14.71 −8.67 −1.92

1.0

0.5 −10.60 −3.81 −5.28 50.59

1.0 −12.19 −7.20 2.68 9.68

2.0 −41.61 56.76 −0.99 7.31

2.0

0.5 −20.76 −7.88 2.25 96.93

1.0 −28.10 1.18 −3.24 31.60

2.0 −28.92 3.71 2.09 7.87

100

0.5

0.5 −5.55 0.36 1.44 28.73

1.0 −6.46 −0.12 −1.61 6.70

2.0 −7.06 −0.62 −1.95 0.66

1.0

0.5 −12.09 −0.82 −2.49 56.24

1.0 −12.94 0.78 −7.61 15.94

2.0 −14.26 −0.54 −0.47 2.90

2.0

0.5 −24.97 1.58 −1.79 101.25

1.0 −25.91 0.94 −1.47 33.83

2.0 −26.82 −4.74 3.27 8.24

has been very few cases of no convergence among 1,000 replications of simulations fitting GLMM

when we misspecify as N(0, σ2) whereas the true distribution is Gam(σ2, 1) or Exp(σ).

We should be cautious that the highly biased estimate of variance component makes it difficult to

evaluate the properties of the fixed parameters as well. The estimation of β2 and σ is subject to

between-individual variation; therefore, we expect that the misspecification of the random effects

distribution affects the quality of these estimates.

However, as discussed by Heagerty and Kurland (2001), and Litiere, et al. (2007), the parameters

of within-subjects covariates would be less affected by the misspecification of random effects dis-

tribution. As a second experiment we simulated negative binomial responses with overdispersion

parameter ϕ. Table 3.6 shows that coverage probabilities are not attained at all even for fixed pa-

rameters except β2, the coefficient of subject-level covariate x2ij . They are extremely low compared

to nominal levels when σ = 0.5, and they improve as σ increases. We also note that as ϕ increases

the performance of confidence interval deteriorates. Table 3.7 shows the biases of estimates when

Poisson-normal GLMM has been fitted for the overdispersed counts data.

4. Summary and Further Research

The generalized linear mixed model is very useful for fitting categorical responses such as binomial

or Poisson counts of clustered data. In GLMM the random effects distribution is assumed to be

normal, and most commercial software routinely fit GLMM only for the normal random effects.

We investigated the sensitivity or robustness of the MLEs of GLMM for the count responses when

the normality assumption is violated. Even when the assumed model is misspecified the MLE is

consistent to the unknown parameter θ∗ which is determined from the Kullback-Leibler information

criteria discussed in Section 2.2. Our interest has been focused to investigate the properties of

MLEs under misspecifications. Through a Monte Carlo study we discussed performances of MLEs
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in terms of coverage probability and bias when pseudo random variates were respectively generated

from the distribution of normal, gamma, exponential, and mixture of two normal distributions.

Furthermore, we considered the effects on the MLEs when the response distribution of counts data

is misspecified as Poisson when the responses were generated from the negative binomial distribution

with overdispersion.

The simulation result shows that the performance of MLEs for fixed parameters are moderately

good even when the random effects distribution is incorrectly specified; however, the results for the

variance component σ are very poor when ui are generated from gamma or exponential distribution

that is not symmetric but skewed. This fact denotes that the estimates of fixed parameters are

relatively robust to the misspecification of random effects distribution but the estimate of variance

component is very sensitive to asymmetric random effects distributions. The results of the second

experiment of misspecified response distribution show also that the performance of MLEs are poor,

in particular, when σ is small. The performance deteriorates as overdispersion increases.

It would be interesting to investigate the performance of MLEs of fixed parameters corresponding to

between-subjects covariates or within-subjects covariates. We further need to study the performance

of MLEs in a very small number of subjects with a relatively large number of elementary units for

each subject.
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