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Abstract

Nonparametric methods are often used as an alternative to parametric methods to estimate density function

and regression function. In this paper we consider improved methods to select the Bezier points in Bezier

curve smoothing that is shown to have the same asymptotic properties as the kernel methods. We show that

the proposed methods are better than the existing methods through numerical studies.
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1. Introduction

Nonparametric methods are often used as alternatives do to unrealistic and restrictive assumptions

on parametric methods in density function estimation and regression function estimation. For the

nonparametric estimation of density function, kernel density estimation is usually used, and three

methods such as kernel method (local polynomial regression), series method (wavelet estimator),

and spline method (regression spline and smoothing spline) are quite popular for the nonparametric

estimation of regression function. See Silverman (1986), Eubank (1988), Fan and Gijbels (1996),

Loader (1999) and Wasserman (2006), for example, among others. Bezier curve smoothing (Bézier,

1977) is regarded as one of kernel-type approaches and is also a useful nonparametric method to

estimate density function and regression function. The Bezier curve is very popular smoothing

technique in computational graphics, especially for computer-aided-geometric design; however, it

has rarely been used in statistics. Kim (1996) first applied the Bezier curve to density estimation in

the statistical area and Kim et al. (1999) showed that estimators using the Bezier curve smoothing

in density estimation and regression function estimation have the same asymptotic properties as

classical kernel estimators. Subsequent works on applications of the Bezier curve to statistics are the

estimation in the measurement error model (Kim et al., 2000), the smoothing of the Kaplan-Meier

estimator (Kim et al., 2003), and the smoothing of the bivariate Kaplan-Meier estimator (Bae et

al., 2005).
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Figure 2.1. Bezier curve b(t) based on 3 Bezier points b0, b1, and b2.

One of the most important and difficult problems in the Bezier curve smoothing is the selection

of Bezier points because the Bezier curve is totally determined by the selected Bezier points. In

fact, the selection of Bezier points in Bezier curve smoothing corresponds to the estimation of the

smoothing parameter in kernel estimation. In this paper, we consider the selection of Bezier points in

distribution function estimation and in regression function estimation. To estimate the distribution

function, the proposed method gives similar numerical results to Kim et al. (1999) even though the

number of Bezier points used in the proposed method is almost half the number of Bezier points

used in Kim et al. (1999). Kim et al. (1999) chose the middle points of the cumulative histogram as

Bezier points; however, the proposed method suggested choosing the right-most points where they

are less than the median and choosing the left-most points where they are larger than the median.

To estimate the regression function, we propose to choose the sample median instead of the sample

mean for the bin estimator; subsequently, the proposed method gives better numerical results than

Kim et al. (1999), especially when there are potential outliers in data.

This paper is organized as follows; In Section 2, review on the Bezier curve are introduced. Section

3 proposes methods to select the Bezier points to estimate the distribution function and regression

function; subsequently, relevant numerical results are given. Concluding remarks are provided in

Section 4.

2. The Bezier Curve

Consider N + 1 points b0 = (z0, w0)
′, b1 = (z1, w1)

′ , . . . , bN = (zN , wN )′ in R2, then the Bezier

curve based on the N + 1 Bezier points b0, b1, . . . , bN is defined as

b(t) =

(
x(t)

y(t)

)
=

n∑
j=0

bjBN,j(t), t ∈ (0, 1) (2.1)

where BN,j(t) =
(
N
j

)
tj(1− t)N−j is a binomial density function. See Figure 2.1 for illustration.

There are many properties about the Bezier curve. First, the Bezier curve has an endpoint interpo-

lation property. That is, b0 and bN are always on the curve bt. Next, bt is symmetric. It does not

matter if the Bezier points are labeled b0, b1, . . . , bN or bN , bN−1, . . . , b0. Another property is linear
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Figure 3.1. Cumulative histogram, the Bezier points at the middle of each histogram, and the corresponding Bezier curve (m = 10,
n = 100 random numbers from a Beta(4, 4) distribution)

Figure 3.2. Cumulative histogram, the Bezier points, and the corresponding Bezier curve (m = 10, n = 100 random numbers
from a Beta(4, 4) distribution)

precision in that
∑N

j=0(j/N)BN,j(t) = t so that an initial straight line is reproduced. Finally, the

first derivative of bt with respect to t can be easily shown to be

d

dt
b(t) = N

N−1∑
j=0

(bj+1 − bj)BN−1,j(t). (2.2)

See Farin (1990) for other properties of the Bezier curve. As an extension of the Bezier curve, if the

Bezier points are in R3, then the subsequent one is called the Bezier surface.

3. Selection of Bezier Points

3.1. Distribution function

3.1.1. Existing methods Let X1, . . . , Xn be random sample from a distribution with density

function f and distribution function F which is assumed to be continuous. Kim et al. (1999) proposed

a Bezier curve smoothing technique to estimate F based on X1, . . . , Xn. In fact, the estimation of F

is equivalent to estimating f . Let m be the number of intervals in the cumulative histogram based

on X1, . . . , Xn. To estimate F , they considered locating the Bezier points at the middle of each

rectangle in the cumulative histogram (see Figure 3.1); however, it underestimates (overestimates)
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Figure 3.3. Cumulative histogram, the proposed Bezier points, and the corresponding Bezier curve (m = 10, n = 100 random
numbers from a Beta(4, 4) distribution)

when the Bezier points are convex (concave). Note that there are m Bezier points in this approach.

To overcome the undesirable aspect, they suggested increasing the number of Bezier points by

locating two points in each rectangle (see Figure 3.2), and the resulting number of the Bezier points

is 2m + 4. Let F̂1 and F̂2 be estimators of F based on m and 2m + 4 Bezier points, respectively.

Kim et al. (1999) argued that F̂2 is superior than F̂1 in the sense of the mean integrated square

error(MISE) at the sacrifice of using more Bezier points. Also, they derived the asymptotic bias and

variance of F̂1, and noted that the stochastic order of leading terms of the bias and the variance of

F̂2 is the same as the kernel density estimator. Specifically, they showed that for x ∈ (0, 1), the bias

and variance of the Bezier curve density estimator f̂B(x) are

Bias
(
f̂B(x)

)
=

{
(1− 2x)f

′
(x) + x(1− x)f

′′
(x)
}

4m
+ o

(
m−1) ,

Var
(
f̂B(x)

)
=

√
m

n

1√
2π

√
f(x)

√
x(1− x) + o

(
m

1
2 n−1

)
.

Using this result, a theoretical choice of m can be obtained by minimizing the asymptotic mean

integrated square error(AMISE) yielding mopt = (4c1/c2)
2/5n2/5 where

c1 =
1

16

∫ 1

0

{
(1− 2x)f

′
(x) + x(1− x)f

′′
(x)
}2

dx

and

c2 =

∫ 1

0

1√
2π

f(x)√
x(1− x)

dx.

3.1.2. Proposed method Recall that F̂2, based on 2m+4 Bezier points, showed superior numerical

performance than F̂1, based on m Bezier points. The main reason for using more Bezier points in

F̂2 is to mitigate the overestimating (underestimating) aspect of F̂1 in the convex (concave) region.

Here, we propose a method of choosing the Bezier points to remove the undesirable aspect of F̂1

based on the same number of Bezier points in F̂1. We propose a method of choosing the Bezier

points that shows similar numerical performance based on half the number of the Bezier points

used in F̂2. Based on this motivation, the proposed method is given in Figure 3.3. The number of

Bezier points used here is m + 2, and the corresponding estimator is denoted by F̂3. The detailed

method of locating the Bezier points for the compactly supported distribution, [0, 1] is as follows.
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Figure 3.4. Mean of 100 replications of F̂1, F̂2 and F̂3 with the true F (x) (m = 10, n = 100 random numbers from a
Beta(4, 4) distribution)

First, consider the Bezier points in computing F̂1. If the cumulative histogram is less than 0.5, then

move the middle point of each rectangle to the right side of the rectangle, and if the cumulative

histogram is larger than 0.5, then move the middle point of each rectangle to the left side of the

rectangle. Second, add two points at (0, 0) and (1, 1). Therefore, the number of Bezier points becomes

m+ 2 (see Figure 3.3).

3.1.3. Numerical performance To compare the proposed method to the existing methods, we

consider three distributions. (i) Beta(4, 4), symmetric with compact support; (ii) Beta(3, 2), asym-

metric with compact support; and (iii) N(0, 1), symmetric with infinite support. When n = 100,

the optimal number of Bezier points m are 19 and 11 for Beta(4, 4) and Beta(3, 2), respectively.

We generate n = 100 random numbers from each distribution, and 100 replications are done. Table

3.1 lists MISE, IV (integrated variance), and ISB (integrated square bias) of 3 estimators F̂1, F̂2

and F̂3 in 3 distributions with m = 10 and m = 20 cases. We see that the MISE of the proposed

estimator F̂3 is smaller than that of existing estimators, even though the number of Bezier points

of F̂3 is half the number of Bezier points of F̂2. In addition, Table 3.1 shows that the estimators are

quite sensitive to the number of Bezier points.

3.2. Regression function

3.2.1. A proposed method Consider a regression model

Yi = f(xi) + ϵi, i = 1, . . . , n,

where the ϵi’s with mean 0 and variance σ2. For simplicity and computational convenience, assume

that xi’s are uniformly distributed on [0, 1] and n = mc for some positive integers m and c. Kim

et al. (1999) suggested a method to generate Bezier points as follows; First, partition [0, 1] into

m intervals with equal length, then compute bin estimator (sample mean of responses) based on

c points in each interval. Let f̂1(x) be the resulting Bezier curve, and it is an estimator of the

regression function f . They showed that, for x ∈ (0, 1), the bias and variance of f̂1(x) are

Bias
(
f̂B(x)

)
=

1

4m
x(1− x)f

′′
(x) + o

(
m−1) ,

Var
[
f̂B(x)

]
=

√
m

n

σ2√
2πx(1− x)

+ o

(√
m

n

)
.



1054 Choongrak Kim, Jin-Hee Park

Table 3.1. MISE, IV (integrated variance), and ISB (integrated square bias) of 3 estimators F̂1, F̂2 and F̂3 in 3 distributions
with m = 10 and m = 20 cases (×104).

m Distn Est. MISE IV ISB

F̂1 70.7271 4.1207 66.6064

Beta(4, 4) F̂2 5.5291 5.1465 0.3826

F̂3 5.5700 2.8430 2.7270

F̂1 55.6008 7.0649 48.5359

10 Beta(3, 2) F̂2 12.3810 6.4706 5.9105

F̂3 11.9429 4.2403 7.7026

F̂1 90.8629 37.5698 53.2930

N(0, 1) F̂2 33.0930 32.2267 0.8662

F̂3 31.4656 30.8253 0.6404

F̂1 181.3256 17.2074 164.1182

Beta(4, 4) F̂2 5.8053 5.7709 0.0344

F̂3 5.0542 4.2858 0.7684

F̂1 16.1021 3.0167 13.0854

20 Beta(3, 2) F̂2 10.1743 7.5687 2.6056

F̂3 8.9522 6.5059 2.4463

F̂1 158.5843 5.0732 153.5111

N(0, 1) F̂2 41.8546 40.3062 1.5484

F̂3 38.9423 37.5090 1.4333

Note that the leading terms of both the bias and variance are the same as those of the local linear

regression with m = h−2, where h is a bandwidth.

As in density estimation the theoretical choice of m is obtained by minimizing the AMISE yielding

mopt = (4c1/c2)
2/5n2/5, where

c1 =
1

16

∫ 1

0

{
x(1− x)f

′′
(x)
}2

dx

and

c2 = σ2

∫ 1

0

1√
2π

1√
x(1− x)

dx =

√
π

2
σ2.

Since the bin estimator is quite sensitive to potential outliers, the estimator f̂1(x) could be unstable

when outliers exist. Motivated by this argument, we propose an estimator, denoted by f̂2(x), using

the sample median instead of the sample mean in each interval. Then, the estimator f̂2(x) would

be quite robust to outliers.

3.2.2. Numerical performance To compare the numerical performance of the proposed estimator

f̂2(x) to the existing estimator f̂1(x), we consider 3 regression functions. The first function

fA(x) = 2

{
20

(
x− 1

2

)3

− 3

(
x− 1

2

)}
, x ∈ (0, 1) (3.1)

is sinusoidal type. The second function, given in Linhart and Zucchini (1986),

fB(x) = exp
(
0.1 + 0.02x2

)
, x ∈ (1, 10) (3.2)
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Figure 3.5. True fA(x), f̂1, and f̂2 with n = 105 random numbers, m = 15 and σ = 0.5 in the potential outlier model.

Figure 3.6. True fB(x), f̂1, and f̂2 with n = 105 random numbers, m = 15 and σ = 0.5 in the potential outlier model.

Figure 3.7. True fC(x), f̂1, and f̂2 with n = 105 random numbers, m = 15 and σ = 0.5 in the potential outlier model.

is monotone increasing. The third function, given in Wand and Jones (1995),

fC(x) = 2 exp

{
− x2

(0.3)2

}
+ 3 exp

{
− (x− 1)2

(0.7)2

}
(3.3)

is a convex type.

For the generation of random numbers, we first generate error terms from N(0, σ2) for several values

of σ. By computing the optimal number of intervals mopt for several values of σ and 3 types of a

regression function, we consider two cases; n = 105 random numbers with m = 15 (c = 7) and

n = 104 random numbers with m = 26 (c = 4).

To see the robustness of the proposed estimator, we generate random numbers with potential

outliers. When we generate random numbers, we assume that ϵi ∼ N(0, σ2). Now, we replace kc-

th random numbers by those from ϵi ∼ N(0, 3σ2) for k = 1, . . . , n/c. Therefore, n/c number of
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Table 3.2. MISE, IV (integrated variance), and ISB (integrated square bias) of f̂1 and f̂2 for 3 different regression functions
fA(x), fB(x) and fC(x) when n = 105 (m = 15, c = 7) and n = 104 (m = 26, c = 4). (a) σ = 0.5, (b) σ = 1, (c)
σ = 1.5, (d) σ = 2

m func. Est. MISE IV ISB

fA(x)
f̂1 6.5753 0.3024 6.2728

f̂2 6.6225 0.6931 5.9295

15 fB(x)
f̂1 8.7504 0.0032 8.7472

f̂2 8.6260 0.0070 8.6190

fC(x)
f̂1 0.2107 0.0016 0.2091

(a) σ = 0.5
f̂2 0.2069 0.0041 0.2028

fA(x)
f̂1 3.0462 0.3834 2.6628

f̂2 3.0624 0.5096 2.5528

26 fB(x)
f̂1 8.0248 0.0038 8.0210

f̂2 7.9800 0.0052 7.9748

fC(x)
f̂1 0.0768 0.0024 0.0744

f̂2 0.0776 0.0031 0.0745

fA(x)
f̂1 11.2430 4.8391 6.4039

f̂2 12.7983 7.1379 5.6604

15 fB(x)
f̂1 8.7313 0.0469 8.6844

f̂2 8.6966 0.0762 8.6203

fC(x)
f̂1 0.2357 0.0263 0.2094

(b) σ = 1
f̂2 0.2568 0.0444 0.2124

fA(x)
f̂1 9.1878 6.1347 3.0532

f̂2 10.1020 7.4779 2.6241

26 fB(x)
f̂1 8.1791 0.0613 8.1177

f̂2 8.0880 0.0758 8.0122

fC(x)
f̂1 0.1150 0.0382 0.0768

f̂2 0.1160 0.0433 0.0728

fA(x)
f̂1 30.5370 22.8440 7.6931

f̂2 39.8663 34.7703 5.0960

15 fB(x)
f̂1 9.0867 0.2450 8.8417

f̂2 8.9411 0.3571 8.5840

fC(x)
f̂1 0.3467 0.4221 0.2185

(c) σ = 1.5
f̂2 0.4294 0.2071 0.2223

fA(x)
f̂1 37.2780 0.1335 0.2131

f̂2 40.7737 37.9493 2.8245

26 fB(x)
f̂1 8.6336 0.3410 8.2926

f̂2 8.4251 0.3809 8.0442

fC(x)
f̂1 0.2457 0.1747 0.0710

f̂2 0.2844 0.2146 0.0698

fA(x)
f̂1 82.7002 75.0986 7.6016

f̂2 113.5430 109.0770 4.4660

15 fB(x)
f̂1 9.8590 0.7220 9.1370

f̂2 9.6257 1.1109 8.5148

fC(x)
f̂1 0.6406 0.4221 0.2185

(d) σ = 2
f̂2 0.8705 0.6403 0.2302

fA(x)
f̂1 112.5729 107.7600 4.8130

f̂2 123.1754 119.7928 3.3826

26 fB(x)
f̂1 9.4960 0.9815 8.5145

f̂2 9.2900 1.2011 8.0889

fC(x)
f̂1 0.6360 0.5688 0.0672

f̂2 0.7426 0.6754 0.0672
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Table 3.3. MISE, IV (integrated variance), and ISB (integrated square bias) of f̂1 and f̂2 for 3 different regression functions
fA(x), fB(x) and fC(x) when n = 105 (m = 15, c = 7) and n = 104 (m = 26, c = 4) in potential outlier models. (a)
σ = 0.5, (b) σ = 1, (c) σ = 1.5, (d) σ = 2

m func. Est. MISE IV ISB

fA(x)
f̂1 7.0044 0.6556 6.3488

f̂2 7.1021 0.7373 6.3649

15 fB(x)
f̂1 8.7382 0.0065 8.7318

f̂2 8.5883 0.0081 8.5802

fC(x)
f̂1 0.2120 0.0034 0.2086

(a) σ = 0.5
f̂2 0.2071 0.0044 0.2027

fA(x)
f̂1 3.5898 1.1388 2.4511

f̂2 3.3823 0.8213 2.5610

26 fB(x)
f̂1 7.9257 0.0124 7.9134

f̂2 7.7736 0.0082 7.7654

fC(x)
f̂1 1.6861 1.5943 0.0918

f̂2 0.0809 0.0045 0.0764

fA(x)
f̂1 15.1605 8.7257 6.4348

f̂2 15.7447 8.6478 7.0968

15 fB(x)
f̂1 8.8420 0.1041 8.7379

f̂2 8.5942 0.0861 8.5081

fC(x)
f̂1 0.2760 0.0544 0.2216

(b) σ = 1
f̂2 0.2410 0.0456 0.1953

fA(x)
f̂1 20.5873 18.2202 2.3671

f̂2 14.6980 11.9568 2.7412

26 fB(x)
f̂1 8.7627 0.0065 8.7562

f̂2 8.5883 0.0081 8.5802

fC(x)
f̂1 0.1706 0.1002 0.0704

f̂2 0.1475 0.0656 0.0819

fA(x)
f̂1 57.3771 52.5445 4.8326

f̂2 51.6538 43.6046 8.0492

15 fB(x)
f̂1 9.4263 0.5250 8.9013

f̂2 8.8355 0.4336 8.4019

fC(x)
f̂1 0.4858 0.2725 0.2133

(c) σ = 1.5
f̂2 0.4041 0.2058 0.1983

fA(x)
f̂1 102.6580 100.3576 2.3004

f̂2 64.3483 60.6602 3.6881

26 fB(x)
f̂1 9.1332 0.5277 8.6055

f̂2 8.8947 0.3913 8.5034

fC(x)
f̂1 0.6204 0.5532 0.0672

f̂2 0.4199 0.3285 0.0914

fA(x)
f̂1 167.1306 159.7076 7.4231

f̂2 147.0441 137.2554 9.7887

15 fB(x)
f̂1 10.2672 1.6607 8.6065

f̂2 9.7815 1.3646 8.4169

fC(x)
f̂1 1.1409 0.8697 0.2711

(d) σ = 2
f̂2 0.8975 0.6864 0.2111

fA(x)
f̂1 306.4358 301.1116 5.3242

f̂2 198.5529 192.1103 6.4425

26 fB(x)
f̂1 10.9141 3.0111 7.9030

f̂2 8.8649 1.9290 6.9359

fC(x)
f̂1 1.6861 1.5943 0.0918

f̂2 1.1427 1.0352 0.1075
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potential outliers are contained in the generated data.

We calculated MISE, IV (integrated variance), and ISB (integrated square bias) of f̂1 and f̂2 for 3

different regression functions fA(x), fB(x) and fC(x) based on 4 types of σ. MISE of f̂2 is lower

than MISE of f̂1, especially in potential outlier models. We can identify f̂2 gives better numerical

results than f̂1.

4. Concluding Remarks

Bezier curve smoothing is one of many useful and efficient nonparametric techniques to estimate

the density function and the regression function. The asymptotic property of the Bezier curve

smoothing as an estimator of density was shown to be the same as the kernel density estimator.

Also, the asymptotic property of the Bezier curve smoothing as an estimator of regression function

was shown to be the same as the local linear regression estimator. The choice of the Bezier points

is very crucial in the Bezier curve smoothing because the choice of the smoothing parameter in

nonparametric estimation is very important.

In this paper, we proposed novel methods for choosing the Bezier points to estimate the density

function and the regression function. Through numerical studies, the proposed methods showed

superior numerical performance over the existing methods of choosing Bezier points. To estimate

the distribution function, we suggested choosing the right-most points where they are less than the

median, and choosing the left-most points where they are larger than the median. To estimate the

regression function, we proposed to choose the sample median instead of the sample mean for the

bin estimator, and the proposed method provided superior numerical results than Kim et al. (1999)

especially when there are potential outliers in data.
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