DOI QR코드

DOI QR Code

Review for Physical and Chemical Process for Heavy Metal Treatment

  • Jeon, Choong (Department of Biochemical Engineering, Gangneung-Wonju National University)
  • 투고 : 2012.09.04
  • 심사 : 2012.10.26
  • 발행 : 2012.12.31

초록

연구자들은 용수 및 폐수 내에 함유되어 있는 중금속을 효과적으로 제거하기 위한 많은 공정을 연구하고 있다. 많은 공정들 중에서 특히, 물리, 화학적 공정은 생물학적 공정과 비교해볼 때 대체로 간단하고 높은 중금속 제거효율을 얻을 수 있다. 최근에는 방사능원소에 대한 위험성 때문에 물리, 화학적 방법들에 대한 관심이 다시 급격하게 증가하고 있다. 이 연구에서는 화학적 침전, 이온 교환, 전기투석, 그리고 막 분리 등과 같은 다양한 물리, 화학적 공정들을 소개하고자 한다.

Many researchers have studied that many processes to effectively remove heavy metals in water/wastewater. Especially, among many processes, physical and chemical processes are relatively simple and obtain high treatment efficiency for removal heavy metals compared with biological treatment. Recently, interests in physical and chemical methods are sharply increasing again because of dangerousness for radioactive element. In this study, various physical and chemical processes such as chemical precipitation, ion-exchange, electrodialysis, and membrane separation are introduced.

키워드

참고문헌

  1. Zhang, Z., Xu, X., and Yan, Y., "Kinetic and Thermodynamic Analysis of Selective Adsorption of Cs(I) By a Novel Surface Whisker-Supported Ion-imprinted Polymer," Desalination, 263, 97-106 (2010). https://doi.org/10.1016/j.desal.2010.06.044
  2. Patterson, J. W., and Minear, R. A., Heavy Metals in the Aquatic Environment, Pergamon Press, Oxford, 1975.
  3. Bhattacharyya, D., Jumawan, A. B., and Grieves, R. B., "Separation of Toxic Heavy Metals by Sulfide Precipitation," Sep. Sci. Technol., 14(5), 441-452 (1979). https://doi.org/10.1080/01496397908058096
  4. Tchobanoglous, G., and Burtonm, F. L., Wastewater Engineering, 3rd ed., Metcarf and Eddy Inc., 1991, New York, pp. 756-759.
  5. Fenglian, F., Liping, X., Bing, T., Qi, W., and Shuxian, J., "Application of a Novel Strategy-advanced Fenton-chemical Precipitation to the Treatment of Strong Stability Chelated Heavy Metal Containing Wastewater," Chem. Eng. J., 189- 190, 283-287 (2012). https://doi.org/10.1016/j.cej.2012.02.073
  6. Gupta, A., Johnson, E. F., Mindler, A. B., and Schlossel, R. H., "The Use of Ion Exchange for Treating Wastewaters and Recovering Metal Values from Electroplating Operations," AIChE Annual Meeting, Nov. 25-30, San Francisco, CA, (1984).
  7. Biserka, B., and Boris, S., "Kinetic Analysis of the Exchange Processes Between Sodium Ions from Zeolite A and Cadmium, Copper and Nickel Ions from Solutions," Sep. Pur. Technol., 37, 17-31 (2004). https://doi.org/10.1016/S1383-5866(03)00220-X
  8. Li-Chun, L., and Ruey-Shin, J., "Ion-exchange Equilibria of Cu(II) and Zn(II) from Aqueous Solutions with Chelex 100 and Amberlite IRC 748 Resins," Chem. Eng. J., 112, 211-218 (2005). https://doi.org/10.1016/j.cej.2005.07.009
  9. Joseph, D. E., Industrial Wastewater Treatment (A guide book), Lewis Publishers, CRC Press Inc, New York, 1995, pp. 51-56.
  10. Ahmed, A. S., Peng, C., Jingjing, B., Huizhen, X., and Juan, A. O., "Recovery of Pb(II) and Removal of HNO3 - from Aqueous Solutions Using Integrated Electrodialysis, Electrolysis, and Adsorption Process," Desalination, 286, 304-315 (2012). https://doi.org/10.1016/j.desal.2011.11.041
  11. Peters, R. W., Ku, Y., and Bhattacharyya, D, "Evaluation of Recent Treatment Techniques for Removal of Heavy Metals from Industrial Wastewaters", in Peter, R. W., Eds., Separation of Heavy Metals and other Trace Contaminants, AIChE Symposium Series 81, American Institute of Chemical Engineering, Boston, 165-203 (1985).
  12. Scheherazade, M., and Farouk, A., "Experimental Study of Metal Ions Removal from Aqueous Solutions by Complexation- Ultrafiltration," J. Memb. Sci., 298, 92-98 (2007). https://doi.org/10.1016/j.memsci.2007.04.003
  13. Joseph, D. E., Industrial Wastewater Treatment (A guide book), Lewis Publishers, CRC Press Inc, New York, 1995, pp. 68-70.
  14. Senthilmurugan, S., and Gupta, S. K., "Separation of Inorganic and Organic Compounds by Using a Radial Flow Hollowfiber Reverse Osmosis Module," Desalination, 196, 221-236 (2006). https://doi.org/10.1016/j.desal.2006.02.001
  15. Abejon, R., Garea, A., and Irabien, A., "Analysis, Modeling and Simulation of Hydrogen Peroxide Ultrapurification by Multistage Reverse Osmosis," Chem. Eng. Res. Design., 90, 442-452 (2012). https://doi.org/10.1016/j.cherd.2011.07.025
  16. Manahan, S. E., Environmental Chemistry, 4th ed., Lewis Publishers Inc., Chelsea, 1990, pp. 153-155.
  17. Alves, V. D., and Coelhoso, I. M., "Orange Juice Concentration by Osmotic Evaporation and Membrane Distillation : A Comparative Study," J. Food Eng., 74, 125-133 (2006). https://doi.org/10.1016/j.jfoodeng.2005.02.019
  18. Pang, F. M., Kumar, P., Teng, T. T., Omar, M., and Kailas, L. W., "Removal of Lead, Zinc and Iron by Coagulation- Flocculation," J. Taiwan Inst. Chem. Eng., 42, 809-815 (2011). https://doi.org/10.1016/j.jtice.2011.01.009
  19. Assaad, E., Azzouz, A., Nistor, D., Ursu, A. V., Sajin, T., Miron, D. N., Monette, F., Niquette, P., and Hausler, R., "Metal Removal Through Synergic Coagulation-flocculation Using an Optimized Chitosan-montmorillonite System," Appl. Clay Sci., 37, 258-274 (2007). https://doi.org/10.1016/j.clay.2007.02.007
  20. Chang, Q., and Wang, G., "Study on the Macromolecular Coagulant PEX Which Traps Heavy Metals," Chem. Eng. Sci., 62, 4636-4643 (2007). https://doi.org/10.1016/j.ces.2007.05.002
  21. Polat, H., and Erdogan, D., "Heavy Metal Removal from Waste Waters by Ion Flotation," J. Hazardous Materials., 148, 267-273 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.013
  22. Dermont, G., Bergeron, M., Richer, M., and Mercier, G., "Remediation of Metal-contaminated Urban Soil Using Flotation Technique," Sci. Total Environ., 408, 1199-1211 (2010). https://doi.org/10.1016/j.scitotenv.2009.11.036
  23. Trimukhe, K. D., and Varma, A. J., "Complexation of Heavy Metals by Crosslinked Chitin and Its Deacetylated Derivatives," Carbohydrate Polym., 71, 66-73 (2008). https://doi.org/10.1016/j.carbpol.2007.05.016
  24. Panagiota, S., Kostas, D., Michael, A. K., and Yiannis, D., "Mechanism of Heavy Metal Uptake by a Hybrid MCM-41 Material: Surface Complexation and EPR Spectroscopic Study," J. Colloid Interface Sci., 343, 374-380 (2010). https://doi.org/10.1016/j.jcis.2009.11.029
  25. Makhloufi, L., Saidani, B., and Hammache, H., "Removal of Lead Ions from Acidic Aqueous Solutions by Cementation on Iron," Water Res., 34, 2517-2524 (2000). https://doi.org/10.1016/S0043-1354(99)00405-4
  26. Mervette, E. B., "Removal of Copper Metal by Cementation Using a Rotating Iron Cylinder," J. Colloid Interface Sci., 283, 123-129 (2005). https://doi.org/10.1016/j.jcis.2004.08.185
  27. Kim, B-S., Jha, M-K., Jeong, J-K., and Lee, J-C., "Leaching of Impurities for the Up-gradation of Molybdenum Oxide and Cementation of Copper by Scrap Iron," Int. J. Mineral Proc., 88, 7-12 (2008). https://doi.org/10.1016/j.minpro.2008.04.002
  28. Volesky, B., "Detoxification of Metal-bearing Effluents: Biosorption for the Next Century," Hydrometallurgy, 59(2-3), 203-216 (2001). https://doi.org/10.1016/S0304-386X(00)00160-2