DOI QR코드

DOI QR Code

폴리아마이드 복합막을 이용한 일산화탄소 및 수소 혼합가스의 분리특성에 대한 온도의 영향

Influence of Temperature on Separation of CO and H2 Mixed Gas Using Polyamide Composite Membrane

  • Choi, Kyung Seok (Department of Environmental Engineering, Kongju National University) ;
  • Poudel, Jeeban (Department of Environmental Engineering, Kongju National University) ;
  • Oh, Sea Cheon (Department of Environmental Engineering, Kongju National University)
  • 투고 : 2012.11.05
  • 심사 : 2012.12.17
  • 발행 : 2012.12.31

초록

오늘날 경제 성장에 따른 도시고형폐기물(Municipal Solid Waste, MSW)의 발생량 증가로 MSW의 환경적인 처리 및 에너지 회수측면에서 폐기물 가스화에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 폐기물 가스화 공정을 통하여 생산된 합성가스의 활용연구를 위하여 폴리아마이드 복합막을 이용한 일산화탄소 및 수소 혼합가스의 분리특성 연구를 수행하였다. 폐기물 합성가스의 분리특성 실험을 위하여 순수 일산화탄소와 수소를 혼합한 모사가스를 활용하였으며, 주입 기체의 유량과 스테이지 컷(stage cut)의 변화에 따른 분리특성에 있어서 온도의 영향을 고찰하였다. 각 실험조건에서 일산화탄소와 수소의 투과도를 평가하였으며, 이때 퍼미에이트(permeate)에서의 수소에 대한 선택도를 평가하였다. 또한 본 연구에서 일산화탄소와 수소의 기체 분리막에 대한 투과 활성화 에너지를 얻기 위하여 Arrhenius 도시를 이용한 분석연구를 함께 수행하였다.

With rapid increase in municipal solid waste (MSW) due to the rising economy, solid waste gasification emerges as one of the promising technologies. Separation of the carbon monoxide (CO) and hydrogen ($H_2$) from syngas obtained by gasification of MSW was studied using the polyamide composite membrane. The separation characteristics of the CO and $H_2$ were studied at different gas flow rates and stage cuts. The permeability of CO and $H_2$ along with the selectivity of $H_2$ with respect to CO was obtained. Furthermore, the Arrhenius plots were obtained to estimate the activation energies of CO and $H_2$ permeabilites.

키워드

참고문헌

  1. Kwak, T. H., Maken, S., Lee, S., Park, J. W., Min, B., and Yoo, Y. D.,"Environmental Aspects of Gasification of Korean Municipal Solid Waste in a Pilot Plant," Fuel., 85(14), 2012-2017 (2006). https://doi.org/10.1016/j.fuel.2006.03.012
  2. Sakai, S., Sawell, S., Chandler, A., Eighmy, T., Kosson, D., Vehlow, and J., Sloot, H. A., Hartlen, J., Hjelmar, O., "World Trends in Municipal Solid Waste Management," Waste Manage., 16(5-6), 341-350 (1996). https://doi.org/10.1016/S0956-053X(96)00106-7
  3. Murphy, J. D., and McKeogh, E., "Technical, Economic and Environmental Analysis of Energy Production from Municipal Solid Waste," Renewable Energy, 29(7), 1043-1057 (2004). https://doi.org/10.1016/j.renene.2003.12.002
  4. Alzate-Gaviria, L. M., Sebastian, P., Perez-Hernandez, A., and Eapen, D., "Comparison of two Anaerobic Systems for Hydrogen Production from the Organic Fraction of Municipal Solid Waste and Synthetic Wastewater," Int. J. Hydrogen. Energy, 32(15), 3141-3146 (2007). https://doi.org/10.1016/j.ijhydene.2006.02.034
  5. Luo, S., Xiao, B., Hu, Z., Liu, S., Guan, Y., and Cai, L., "Influence of Particle Size on Pyrolysis and Gasification Performance of Municipal Solid Waste in a Fixed Bed Reactor," Bioresour. Technol., 101(16), 6517-6520 (2010). https://doi.org/10.1016/j.biortech.2010.03.060
  6. DiMartino, S., Glazer, J., Houston, C., and Schott, M., "Hydrogen/ carbon Monoxide Separation with Cellulose Acetate Membranes," Gas. Sep. Purif., 2(3), 120-125 (1988). https://doi.org/10.1016/0950-4214(88)80027-6
  7. Dutta, N., and Patil, G., "Developments in CO Separation," Gas. Sep. purif., 9(4), 277-283 (1995). https://doi.org/10.1016/0950-4214(95)00011-Y
  8. Dutta, N., and Patil, G., "Developments in CO Separation," Gas. Sep. purif., 9(4), 277-283 (1995). https://doi.org/10.1016/0950-4214(95)00011-Y
  9. McCandless, F., "Separation of Binary Mixtures of CO and H2 by Permeation through Polymeric Films," Ind. Eng. Chem. Proc. Des. Develop., 11(4), 470-478 (1972). https://doi.org/10.1021/i260044a003
  10. Huang, S. H., Hu, C. C., Lee, K. R., Liaw, D. J., and Lai, J. Y., "Gas Separation Properties of Aromatic Poly (amideimide) Membranes," Eur. Polym. J., 42(1), 140-148 (2006). https://doi.org/10.1016/j.eurpolymj.2005.06.032
  11. Keskin, S., and Sholl, D. S., "Assessment of a Metal-organic Framework Membrane for Gas Separations Using Atomically Detailed Calculations: $CO_{2}$, $CH_{2}$, $N_{2}$, $H_{2}$ Mixtures in MOF-5," Ind. Eng. Chem. Res., 48(2), 914-922 (2008).
  12. Kim, T. H., Jeong, J. C., Park, J. M., and Woo, C. H., "A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane," Membr. J., 20(4), 267-277 (2010).
  13. Yampolskii, Y., and Freeman, B., Membrane Gas Separation, John Wiley & Sons Ltd., 2010, pp. 204-207.
  14. Park, B. P., Kim, D. H., Lee, G. W., Hwang, T. S., and Lee, H. K., "A Study on the Permeance Through Polymer Membranes and Selectivity of $CH_{4}/N_{2}$," Korean Chem. Eng. Res., 49(4), 498-504 (2011). https://doi.org/10.9713/kcer.2011.49.4.498
  15. Van, Amerongen. G. J., "Influence of Structure of Elastomers on their Permeability to Gases," Rubber. Chem. Technol., 5(3), 307-332 (1950).