DOI QR코드

DOI QR Code

Effect of Rapid Mixing Intensity and Coagulant Dosages on Phosphorus Removal by Coagulation

응집을 이용한 인의 제거에 급속혼화강도 및 응집제 주입량이 미치는 영향

  • Han, Hyun-Jin (Department of Environmental Engineering, Changwon National University) ;
  • Moon, Byung-Hyun (Department of Environmental Engineering, Changwon National University)
  • 한현진 (창원대학교 환경공학과) ;
  • 문병현 (창원대학교 환경공학과)
  • Received : 2012.10.05
  • Accepted : 2012.11.30
  • Published : 2012.12.31

Abstract

In this study, the effects of mixing intensity and coagulant dosages on the characteristics of floc growth for phosphorus removal were investigated. The experiments were conducted under Al/P molar ratio of 1.0, 1.5 and 2.0; rapid mixing intensity with G value of 100, 300, and 500 $s^{-1}$. The characteristics of floc growth were measured by flocculation index (FSI) and the removal efficiencies of phosphorus by using different size filters. The removal efficiencies of soluble phosphorus increased as Al/P molar ratio and rapid mixing intensity increased. However, the highest removal efficiencies of T-P were observed at G value of 300 $s^{-1}$. When Al/P molar ratio was lower than 1.0, the value of FSI at G value of 500 $s^{-1}$ was the largest. However, when Al/P ratio was larger than 1.0, the value of FSI at G value 300 $s^{-1}$ was the largest. Effects of mixing intensity and Al/P molar ratio on coagulation for phosphorus removal of synthetic and real wastewater effluent were observed to be similar.

본 연구는 교반강도 및 응집제 주입량의 변화에 따라 플럭의 성장특성이 인의 제거에 미치는 영향을 파악하고자 수행되었다. 본 연구에서는 Al/P 몰비를 1.0, 1.5와 2.0으로 급속혼화강도 G값을 100, 300과 500 $s^{-1}$로 변화시켜 수행하였다. 응집시 발생되는 응집지수(floc size index, FSI)와 크기가 다른 여과지를 이용하여 인의 제거율을 측정하여 성장 특성을 파악하였다. 연구결과 교반강도가 높을수록 용존인의 제거효율이 증가하였으며 Al/P 몰비가 낮을수록 교반강도의 영향이 컸다. T-P의 제거율은 Al/P 몰비 1.0 이하에서는 급속혼화 교반강도가 높을수록 높았으나 Al/P 몰비 1.0 이상에서는 G값 300 $s^{-1}$에서 가장 높은 제거 효율을 나타내었다. Al/P 비 1.0 이하에서는 G값 500 $s^{-1}$에서 가장 큰 FSI값을 나타내었으며, Al/P 몰비 1.0 이상에서는 G값 300 $s^{-1}$에서 가장 큰 FSI값을 나타내었다. 실제하수처리장 유출수를 대상으로 응집에 의한 인 제거에 Al/P 몰비와 급속혼화 강도의 영향은 인공조제수의 결과와 유사하였다.

Keywords

References

  1. Kwak, J. W., "Physico-chemical Principle and Practice of Water Treatment," Yeigigak, Seoul, 1998, pp. 39-41, pp. 194-269.
  2. Liu, G., Zhang, X., and Talley, J. W., "Effect of Copper(II) on Natural Organic Matter Removal During Drinking Water Coagulation Using Aluminum-Based Coagulants," Water Environ. Res., 79(6), 593-599 (2007). https://doi.org/10.2175/106143006X136829
  3. Zhu, I. X., Rothberg, M. R., and Wiedmeier, T., "Pilot Study on TOC Removal in Drinking Water Using Enhanced Coagulation Assisted by Membrane Ultrafiltration," Am. Water Works Assoc., 3, 1499-1514 (2008).
  4. Kim, S. H., Yoon, D. S., and Yoon, B. H., "Evaluation of Effect of Rapid Mixing Intensity on Chemical Phosphorus Removal Using Al Hydrolysis Speciation," J. KSWW., 25(3), 367-373 (2011).
  5. Han, S. W., and Kang, L. S., "Removal Mechanism of Phosphorus in Wastewater Effluent Using Coagulation Process," Environ. Eng. Res., 32(8), 774-779 (2010).
  6. Yan, M., Wang, D., Ni, J., Qu, J., Chow, C. W. K., and Liu, H., "Mechanism of Natural Organic Matter Removal by Polyaluminium Chloride : Effect of Coagulant Particle size and Hydrolysis Kinetics," Water Res., 42(12), 3361-3370 (2008). https://doi.org/10.1016/j.watres.2008.04.017
  7. Yu, W. Z., John, G., Luiza, C., and Guibai L., "The Role of Mixing Conditions on Floc Growth, Breakage and Re-growth," Chem. Eng. J., 171(2), 425-430 (2011). https://doi.org/10.1016/j.cej.2011.03.098
  8. Song, Y. K., Jung, C. W., and Sohn, I. S., "Characterization of Natural Organic Matter by Rapid Mixing Condition," J. KSWW., 20(4), 559-571 (2006).
  9. Yu, W. Z., John, G., and Luiza, C., "Breakage and Re-growth of Flocs: Effect of Additional Doses of Coagulants Species," Water Res., 45(20), 6718-6724 (2011). https://doi.org/10.1016/j.watres.2011.10.016

Cited by

  1. Effect of TiCl4Concentration and Mixing Intensity on Phosphorus Removal in Synthetic Wastewater vol.38, pp.3, 2016, https://doi.org/10.4491/KSEE.2016.38.3.150
  2. Treatment of Phosphorus Species using Iron Coagulation and Fenton Oxidation vol.30, pp.6, 2014, https://doi.org/10.15681/KSWE.2014.30.6.653
  3. Coagulation-membrane separation hybrid treatment of secondary treated effluent for high efficiency phosphorus removal vol.32, pp.1, 2018, https://doi.org/10.11001/jksww.2018.32.1.047