성형 오차 예측 모델을 이용한 가변 성형 공정에서의 탄성 회복 보정

서영호¹·강범수¹·김 정[#]

Compensation for Elastic Recovery in a Flexible Forming Process Using Predictive Models for Shape Error

Y. H. Seo, B. S. Kang, J. Kim

(Received August 27, 2012 / Revised November 27, 2012 / Accepted November 27, 2012)

Abstract

The objective of this study is to compensate the elastic recovery in the flexible forming process using the predictive models. The target shape was limited to two-dimensional shape having only one curvature radius in the longitudinal-direction. In order to predict the shape error the regression and neural network models were established based on the finite element (FE) simulations. A series of simulations were conducted considering input variables such as the elastic pad thickness, the thickness of plate, and the objective curvature radius. Then, at sampling points in the longitudinal-direction, the shape errors between formed and objective shapes could be calculated from the FE simulations as an output variable. These shape errors were expressed to a representative error value by the root mean square error (RMSE). To obtain the correct objective shape the die shape was adjusted by the closed-loop using the neural network model since the neural network model shows a higher capability of estimating the shape error than the regression model. Finally the experimental result shows that the formed shape almost agreed with the objective shape.

Key Words : Elastic Recovery Compensation, Flexible Forming, Neural Network, Finite Element Simulation, Shape Error

1. 서 론

굽힘가공은 판재를 성형함에 있어서 가장 많이 사용되는 방법중의 하나로서 자동차의 차체, 비행 기의 기체 및 선박의 선체 부품 등의 제작에 널 리 이용되고 있다. 하지만 굽힘가공은 탄성회복을 수반하므로 이를 제거 또는 보정하기 위한 연구 가 지속적으로 이루어져 왔다. 탄성회복을 제거하 기 위한 방법으로 소재와 금형의 접촉상태[1], 곡 률반경과 소재 두께의 비(R/t) 및 바우싱거 효과 (bauschinger effect)[2] 등에 대한 연구가 진행되었 지만 성형공정 및 재료상태에 의존적이다[3]. 반면 탄성회복량을 제어 및 보정하는 방법은[4~7] 보정 된 금형의 설계 및 제작에 막대한 비용이 발생하 므로 실공정에 적용하기에 어려움이 따른다. 본 연구에서는 적은 비용으로 탄성회복을 보정할 수 있는 방법을 제시하고자 한다. 보정된 금형의 설 계 및 제작비용을 줄이기 위하여 다수의 펀치로 이루어진 가변금형을 사용하였다. 가변금형은 펀 치의 높이를 조절함으로써 성형곡면을 자유롭게 구성할 수 있다[8~10]. 따라서 보정된 금형의 구현 에 소요되는 비용을 최소화 할 수 있다.

한국소성가공학회지/제21권 제8호, 2012년/479

Department of Aerospace Engineering, Pusan National University
 Corresponding Author : Department of Aerospace Engineering,
 Pusan National University, E-mail: greatkj@pusan.ac.kr

탄성회복 보정기법을 적용할 목적곡면은 길이 방 향의 곡률만 가지는 2차원 형상이며, 탄성회복량 을 제어하기 위하여 폐루프(closed-loop)를 구성하 였다. 임의의 설계변수에 따른 최초의 탄성 회복 량을 예측하기 위하여 유한요소해석에 기반을 둔 회귀모델 및 neural network 모델을 개발하였으며, 상대적 오차를 산출하여 적합성을 검증하였다. 폐 루프에 의하여 보정된 성형곡면을 예측하였으며, 가변성형공정에 적용하였다. 그 결과 성형오차는 0.5% 이내에서 수렴하였으며, 이는 가변성형 실험 에 의하여 검증되었다.

2. 설계변수를 고려한 성형해석

2.1 설계변수

탄성회복 보정 비용을 최소화하기 위하여 가변 성형공정을 고려하였으며, Fig. 1과 같이 길이방향 으로만 곡률을 가지는 2차원 형상을 목적곡면으 로 사용하였다. 가변금형을 구성하는 각각의 편치 하우징은 한 변이 20mm인 정사각 단면을 가지며, 편치의 헤드는 반구의 형태를 가진다. 판재와 가 변금형의 점접촉에 따른 표면결함을 억제하기 위 하여 판재와 가변금형 사이에 탄성패드를 삽입하 였다. 판재의 성형성에 영향을 미치는 설계변수로 다음과 같이 3개의 변수를 선택하였다.

T: 판재두께 [mm] (3수준 - 3,4,5) R: 목적곡률반경 [mm] (3수준 - 388,300,249) t: 탄성패드두께 [mm] (2수준 - 5,10)

2.2 성형해석

주어진 설계변수에 대하여 탄성 회복량을 예측 하기 위한 모형을 구성하기 위해서 각 설계변수 의 수준에 따라 가변성형공정을 모델링 하였다. 해석모델은 Fig. 2와 같이 판재, 탄성패드, 상하부 가변금형으로 이루어져 있다.

Fig. 1 Conceptual design of flexible forming process

480 / 한국소성가공학회지/제21권 제8호, 2012년

Table 1 Material properties of ASTM A36

Young's	Tensile	Yield	Elongation	Poisson's
modulus	strength	strength	e	ratio
200 [GPa]	400 [MPa]	250 [MPa]	20 [%]	0.26

가변금형을 구성하고 있는 펀치의 상대높이는 베지어 곡선(Bezier curve)으로 모델링 된 성형곡면 과 펀치헤드 사이의 최소거리에 의해 결정된다. 목적곡률반경이 R mm인 경우, 목적곡면은 오목한 면의 곡률반경이 R mm이며, 볼록한 면의 곡률반 경은 판재의 두께인 T mm만큼 오프셋 시킨 (R+T)mm이다. 펀치헤드는 곡률반경이 10mm인 곡 선으로 모델링 되었다. 목적곡면과 펀치헤드를 베 지어 곡선으로 모델링하여 곡선의 이산화 과정을 거쳐 곡면간의 최소거리를 도출한다. 본 연구와 같이 탄성패드가 삽입되는 경우 그 두께를 고려 하여 가변금형의 상부에 해당하는 펀치는 곡률반 경이 (R+t) mm, 하부에 해당하는 펀치는 곡률반경 이 (R+T+t) mm가 되도록 높이가 결정된다. 판재의 크기는 R mm의 곡률반경으로 성형되었을 때 크기 가 300mm × 200mm가 되도록 모델링 하였다. 판재 의 변형을 예측하기 위하여 가공경화식 $(\sigma = K\varepsilon^{n})$ 이 사용되었다(K=611.4MPa, n=0.234). 해석에 사용된 판재의 물성치는 Table 1에 요약하였으며, 식 (1)과 같이 Mooney Rivlin 모델을 사용하여 Shore A 90 탄성패드의 거동을 묘사하였다.

$$\omega = C_{10} \left(I_1 - 3 \right) + C_{01} \left(I_2 - 3 \right) \tag{1}$$

C10과 C01는 재료의 압축실험(Fig. 3)을 통하여 얻을 수 있는 재료상수이며, I1과 I2는 1, 2차 deviatoric strain invariant이다. 가변금형은 탄성패드와 직접 접촉하여 하중을 전달하는 편치헤드만 모델링 하 였다.

Fig. 3 Compressive stress-strain curve for a shore A hardness of 90

Fig. 4 Simulation result

가변금형은 강체로 가정하였으며, 마찰계수는 0.2를 사용하였다. ANSYS에서 지원하는 SOLID 164를 사용하여 판재 및 탄성패드를 모델링 하였 고, 가변금형의 모델링에는 SHELL 163이 사용되 었다. 성형해석에는 외연적 기법(explicit method)을 기반으로 하는 LS-DYNA를 사용하였으며, 내연적 기법(implicit method) 기반의 ANSYS를 이용하여 탄성회복 해석을 수행하였다. Fig. 4는 성형해석 결 과 및 탄성회복 해석 결과를 각각 도시하고 있다.

2.3 성형오차 산출

본 연구에서 사용된 목적곡면의 형상은 인장방 향으로 단일곡률을 가지므로 목적곡면과 성형해 석 결과와의 인장방향 성형오차를 산출함으로써 탄성 회복량을 예측할 수 있다. 탄성 회복량의 예 측이 가능한 모형을 개발하기 위하여 성형오차는 하나의 대표값으로 표현될 필요가 있다. 통계학에 서 사용되는 오차로서 목적곡면과 성형곡면의 높 이 차이를 측정하는 값으로 정의한다. 샘플링 포 인트에서의 오차를 제곱하여 샘플링 수만큼 나누 어준 값을 인장방향으로의 성형오차 측정의 도구 로 사용한다.

$$\varepsilon_{s} = \sqrt{\frac{\sum_{i=1}^{n} \left(Z_{s,i} - Z_{o,i}\right)^{2}}{n}}$$
(2)

Z_s는 샘플링 포인트에서의 성형높이 즉, Z축 좌표 를 의미하며, Z_{o,i}는 같은 점에서 원래 성형되어져 야 하는 높이, 목적곡면의 Z축 좌표를 의미한다. *n* 은 표본의 크기, 성형오차 산출 시 고려되는 샘플 의 수로서 인장방향으로의 절점(node)의 수와 같 다. Table 2에 산출된 성형오차를 도시하였다. 길이 방향의 성형오차는 판재의 두께가 두꺼울수록, 곡 률반경이 작을수록 감소될 것으로 예측되었다. 탄 성체 패드의 영향은 거의 없음을 알 수 있다. 하 지만 성형오차에 대한 곡률반경의 영향이 탄성체 패드의 두께가 증가함에 따라 감소될 것으로 예 측되었으므로 간접적으로 영향을 미치고 있을 것 으로 판단된다.

3. 탄성회복 예측모델 개발

3.1 회귀모델

Table 2의 설계변수에 따른 성형오차를 활용하여 다중 회귀분석을 수행하였다. 종속변수는 인장방 향으로의 성형오차(Y), 독립변수는 판재두께(X₁), 탄성패드 두께(X₂), 목적곡률반경(X₃)로 설정하여 SPSS 14.0을 사용하여 회귀식을 도출하였다. 단계

 Table 2 Shape error calculated from FE results

Plate thickness	Pad thickness	Curvature radius [mm]			
[mm]	[mm]	388	300	249	
3	5	4.014	3.894	3.542	
	10	4.060	3.952	3.751	
4	5	3.019	2.922	2.773	
4	10	3.128	3.100	3.088	
5	5	2.359	2.192	1.962	
5	10	2.594	2.556	2.552	

한국소성가공학회지/제21권 제8호, 2012년/481

입력방식을 적용한 다중회귀분석을 이용하여 폭 방향 성형오차에 대한 결과를 Table 3에 나타내 었다. 1단계에서는 판재두께만이 독립변수로서 투입되었고, 이어서 탄성패드 두께 및 목적곡률 반경이 추가적인 독립변수로 투입되었다. Table 3 의 모형 요약결과에 따르면 R^2 은 1단계에서 0.913으로 나타났으며, 2단계에서는 0.946, 3단계 에서는 0.967로 증가하였다. R^2 은 다중회귀분석 의 결정계수(coefficient of determination)로서 종속 변수의 분산 중 독립변수들에 의해 설명되는 비 율을 나타낸다. 즉 3단계 회귀모형은 종속변수인 성형오차를 96.7% 설명하고 있다. 최종 회귀모형 은 다음과 같다.

$Y = 5.15 - 0.743X_1 + 0.049 X_2 + 0.002X_3 \tag{3}$

3.2 Neural Network 모델

Matlab에서 제공하는 함수추정에 뛰어난 역추적 (backpropagation) 알고리즘을 이용하여 neural network 모델을 학습(train)하였다. 3개의 설계변수 를 입력변수로 설정하고, 이에 따른 성형오차를 출력변수로 하여 3입력 1출력의 구조를 구성하였다. Table 2의 샘플 데이터를 이용하여 neural network 모 델을 학습하였으며, 학습된 모델을 이용하여 성형 오차를 예측하였다.

3.3 성형오차 예측모형 비교 앞서 개발한 성형오차 예측모형을 이용하여

T 11 3	D 14 6		•	
Inhia 4	Roculte of	multinla	rogrossion	analycic
Table 5	INCOULTS OF	munupic	10210331011	anaiy 515

Model	Entered variable	Model summary		Coeff	icient
1	X_I	R^2	0.913	Const.	6.080
				X_I	-0.750
2	<i>X</i> ₂		0.946	Const.	5.730
				X_I	-0.750
				X_2	0.047
3	X_3		0.967	Const.	5.150
				X_{I}	-0.743
				X_2	0.049
				X_3	0.002

482 / 한국소성가공학회지/제21권 제8호, 2012년

임의의 설계변수에 대한 성형오차의 예측이 가능 하다. 각 모형의 예측 정확도를 판별하기 위하여 Table 2의 18가지 경우에 대하여 상대적 오차를 다 음과 같이 정의하였다.

$$E_{i}[\%] = \frac{\left|P_{i} - X_{i}\right|}{X_{i}} \times 100 \text{ for } i = 1,...,18$$
(4)

P_i는 회귀모형 혹은 neural network 모델에 의해 예측된 값이며, X_i는 Table 2의 성형해석결과에 의한 성형오차이다. Fig. 5는 회귀모형과 neural network 모 델의 상대적 오차를 도시한 결과이다. 상대적 오 차의 평균값은 Neural network 모델이 2.58%, 회 귀모형이 4.42%로 neural network 모델이 회귀모 형에 비해 상대오차가 작게 나타났다. 따라서 본 논문에서 고려하고 있는 2차원 가변성형공정의 탄성회복 보정에는 neural network 모델이 사용되 었다.

4. 탄성회복 보정

4.1 폐루프를 이용한 탄성회복 보정

길이방향의 성형오차는 탄성회복의 정도를 의 미하고 그 양은 설계변수의 수준에 따라 다르게 나타난다. 본 연구에서는 탄성회복 예측값을 활용 하여 성형곡면을 보정하고자 하였다. Fig. 6과 같이 성형곡면의 너비(W)가 정의되면 곡률반경(R)은 양 끝단의 높이(H)에 의해 결정된다. 따라서 보정된 높이(H')에 의해 보정된 곡률반경(R')을 결정할 수 있다. 목적곡면과 성형된 곡면의 중심점을 일치시 키고 식 (2)의 샘플링 포인트 수를 3개(중심점, 양 끝점)로 가정하면, 높이 보정량 △H는 다음과 같다.

Fig. 5 Relative error in shape error prediction

Fig. 6 Geometrical relationship of compensated and objective surface

Fig. 7 Flow chart for springback compensation

$$\Delta H = \varepsilon_s \sqrt{3/2} \tag{5}$$

보정된 높이는 식 (5)와 같다.

$$H' = H + \Delta H \tag{6}$$

일반적으로 탄성회복은 비선형적으로 발생하므로 Fig. 7과 같이 성형오차가 0.5% 이내를 만족하도록 폐루프를 구성하였다.

4.2 탄성회복 보정모델 적용 및 검증

유한요소해석과 실험을 통하여 탄성회복 보정 모델을 적용하고 검증하였다. Table 4와 같이 판재 및 탄성체의 두께는 각각 4, 5mm로 유지하였고, 목적곡률반경은 300mm로 설정하였다. 첫 번째 루 프에서 성형오차는 neural network 모델에 의해 2.931로 예측되었고 식 (5), (6)를 통하여 보정높이 를 계산하였으며, CATIA를 이용하여 보정된 곡률 반경 276mm를 계산하였다. 두 번째 루프에서 목 적곡률반경을 276mm로 설정한 결과 성형오차는

Table 4 Used conditions in FE simulation

No.	T[mm]	t[mm]	R[mm]	٤ _s	R'[mm]
1	4	5	300	2.931	276
2	4	5	276	0.815	271
3	4	5	271	0.245	-

Fig. 8 Experimental result

Fig. 9 Comparison of surface curvature between FE simulation and experiment

0.815였으므로 목적곡률반경을 271mm로 수정하여 세 번째 루프를 수행한 결과 성형오차가 0.245로 조건을 만족하였다.

위의 유한요소해석 결과를 검증하기 위하여 가 변성형 테스트를 수행하였다. 사용된 가변금형의 성형면적은 300mm×200mm, 펀치크기는 20mm로 가변금형의 모델링에 사용된 조건과 동일하다. 소 재는 4mm 두께의 ASTM A36이며, 목적곡률반경 은 최종루프에 사용된 271mm로 설정하였다. Fig. 8 은 성형테스트 결과를 도시하고 있다. 성형곡면 측정 후 성형오차를 산출한 결과 Fig. 9와 같이 0.381로 앞서 제시한 조건을 만족한다.

한국소성가공학회지/제21권 제8호, 2012년/483

5. 결 론

본 연구는 비용을 최소화하여 최종제품의 원하 는 형상을 얻기 위하여 가변금형을 사용하였으며, 다음과 같은 결론을 얻을 수 있었다.

(1) 가변금형을 사용한 탄성회복 보정방법이 폐 루프를 통하여 구현되었다. 2차원 형상의 목적곡 면을 선정하였으며, 3개의 설계변수에 대한 성형 오차를 종속변수로 하여 18개의 해석조건을 수립 하였다. Explicit-implicit 연성해석을 기반으로 성형 오차를 산출하였으며, 이를 활용하여 성형오차 예 측을 위한 회귀모형 및 neural network 모델을 개 발하였다. 2개의 예측모형의 정확성을 비교한 결 과 neural network 모델이 좀 더 작은 상대오차를 나타냈으며, 그에 따라 본 논문에서 고려하고 있 는 2차원 가변성형공정의 탄성회복 보정에 neural network 모델을 사용하였다.

(2) 최초의 탄성 회복량은 neural network 모델에 의하여 예측되었으며, 끝단에서의 높이 보정량 산 출을 통하여 성형곡면을 수정 후 성형오차를 재 산출하였다. 이러한 일련의 과정을 반복하여 성형 오차가 0.5 이내를 만족하는 최종 성형곡면을 도 출할 수 있었다.

(3) 본 연구의 결과는 가변성형장치 개발과 관 련하여 재료의 두께 및 목적곡률반경에 대한 설 계변수의 타당성 검증에 사용되었다. 작동범위내 의 모든 조건에 대한 해석적 검증을 할 수 없으 므로 회귀분석 및 neural network 모델에 의거하여 타당성 검토를 수행하여 가변성형장치를 개발하 였다.

(4) 비록 본 연구에서는 2차원 문제에 적용하였 지만 좀 더 현실적이고 복잡한 3차원 형상에 대 한 연구 및 고강도강을 비롯한 다양한 재료에 대 한 연구로 확장시킬 필요성이 있다. 결과적으로 neural network 모델을 이용한 탄성회복 보정모델 은 가변금형을 이용한 2차원 형상의 성형공정에 비용을 최소화하여 적용 가능할 것으로 판단된다.

후 기

이 논문은 2008년도 과학기술부의 재원으로 한 국과학재단의 지원을 받아 수행된 연구입니다(No. ROA-2008-000-20017-0). 또한, 본 연구는 교육과학 기술부와 한국연구재단의 지역혁신인력양성사업 으로 수행된 연구결과입니다.

참 고 문 헌

- M. Samuel, 2000, Experimental and Numerical Prediction of Springback and Side Wall Curl in Ubendings of Anisotropic Sheet Metals, J. Mater. Process. Technol., Vol. 105, No. 3, pp. 382~393.
- [2] W. D. Carden, L. M. Geng, D. K. Matlock, R. H. Wagoner, 2002, Measurement of Springback, Int. J. Mech. Sci., Vol. 44, No. 1, pp. 79~101.
- [3] H. S. Cheng, J. Cao, Z. C. Xia, 2007, An Accelerated Springback Compensation Method, Int. J. Mech. Sci., Vol. 49, No. 3, pp. 267~279.
- [4] R. D. Webb, D. E. Hardt, 1991, A Transfer Function Description of Sheet Metal Forming for Process Control, Trans. ASME, Vol. 113, No. 1, pp. 44~52.
- [5] A. P. Karafillis, M. C. Boyce, 1995, Tooling and Binder Design for Sheet Metal Forming Processes Compensating Springback Error, Int. J. Mach. Tool. Manufac., Vol. 36, No. 4, pp. 503~526.
- [6] A. P. Karafillis, M. C. Boyce, 1992, Tooling Design in Sheet Metal Forming using Springback Calculations, Int. J. Mech. Sci., Vol. 34, No. 2, pp. 113~131.
- [7] W. Gan, R. H. Wagoner, 2004, Die Design Method for Sheet Springback, Int. J. Mech. Sci. Vol. 46, No. 7, pp. 1097~1113.
- [8] Y. H. Seo, S. C. Heo, T. W. Ku, J. Kim, B. S. Kang, 2011, Design of Flexible Die Punch and Control System for Three-dimensional Curved Forming Surface, Trans. Mater. Process., Vol. 20, No. 3, pp. 204~211.
- [9] Y. H. Seo, S. C. Heo, B. S. Kang, J. Kim, 2011, Statistical Study on Correlation Between Design Variable and Shape Error in Flexible Stretch Forming, Trans. Mater. Process., Vol. 20, No. 2, pp. 124~131.
- [10] Y. H. Seo, S. C. Heo, W. J. Song, J. Kim, B. S. Kang, 2010, Tendency Analysis of Shape Error According to Forming Parameter in Flexible Stretch Forming Process Using Finite Element Method, Trans. Mater. Process., Vol. 19, No. 8, pp. 1~8.

484 / 한국소성가공학회지/제21권 제8호, 2012년