DOI QR코드

DOI QR Code

Hypoglycemic Effect of Padina arborescens Extract in Streptozotocin-induced Diabetic Mice

  • Park, Mi Hwa (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2012.07.31
  • Accepted : 2012.11.23
  • Published : 2012.12.31

Abstract

This study investigated the hypoglycemic effect of the Padina arborescens extract in STZ-induced diabetic mice. Freeze-dried Padina arborescens were extracted with 80% methanol and concentrated for use in this study. The hypoglycemic effect was determined by inhibitory activities against ${\alpha}$-glucosidase and ${\alpha}$-amylase as well as the alleviation of postprandial blood glucose level. Padina arborescens extracts showed higher inhibitory activities than acarbose, a positive control against ${\alpha}$-glucosidase and ${\alpha}$-amylase. The $IC_{50}$ values of Padina arborescens extracts against ${\alpha}$-glucosidase and ${\alpha}$-amylase were 0.26 and 0.23 mg/mL, respectively, which evidenced as more effective than observed with acarbose. The increase of postprandial blood glucose levels were significantly suppressed in the Padina arborescens extract administered group than the control group in the streptozotocin induced diabetic mice. Furthermore, the area under the curve (AUC) was significantly lowered via Padina arborescens extract administration in diabetic mice (p 0.05). These results indicated that the Padina arborescens extract might be used as an inhibitor of ${\alpha}$-glucosidase and ${\alpha}$-amylase and delay absorption of dietary carbohydrates.

Keywords

References

  1. Corry DB, Tuck ML. 2002. Protection from vascular risk in diabetic by pretension. Curr Hyperten Rep 2: 154-159.
  2. Baron AD. 1998. Postprandial hyperglycemia and $\alpha$-glucosidase inhibitors. Diabetes Res Clin Pract 40: S51-55. https://doi.org/10.1016/S0168-8227(98)00043-6
  3. UK Prospective Diabetes Study Group. 1998. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet 352: 837- 853. https://doi.org/10.1016/S0140-6736(98)07019-6
  4. Saito N, Sakai H, Sekihara H, Yajima Y. 1998. Effect of an $\alpha$-glucosidase inhibitor (voglibose), in combination with sulphonilureas, on glycaemic control in type 2 diabetes patients. J Int Med Res 26: 219-232. https://doi.org/10.1177/030006059802600501
  5. Holman RR, Cull CA, Turner RC. 1999. A randomized double- blind trial of acarbose in type 2 diabetes shows improved glycaemic control over 3 years (U.K. Prospective Diabetes study 44). Diabetes Care 22: 960-964. https://doi.org/10.2337/diacare.22.6.960
  6. Toeller M. 1994. $\alpha$-Glucosidase inhibitiors in diabetes: efficacy in NIDDM subjects. Eur J Clin Invest 24: 31-35.
  7. Clissold SP, Edwards C. 1988. A preliminary review of its pharmacodynamic and pharmacokinetics properties, and therapeutic potential. Drugs 35: 214-243.
  8. Casirola DM, Ferraris RP. 2006. Alpha-glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Metabolism 55: 832-841. https://doi.org/10.1016/j.metabol.2006.02.011
  9. Sels JP, Huijberts MS, Wolffenbuttel BH. 1999. Miglitol, a new alpha-glucosidase inhibitor. Expert Opin Pharmacother 1: 149-156. https://doi.org/10.1517/14656566.1.1.149
  10. Stand E, Baumgartl HJ, Fuchtenbusch M, Stemplinger J. 1999. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes Metab 1: 125-220.
  11. Hanefeld M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J Diabetes Complicat 12: 228-237. https://doi.org/10.1016/S1056-8727(97)00123-2
  12. Hsiao SH, Liao LH, Cheng PN, Wu TJ. 2006. Hepatotoxicity associated with acarbose therapy. Ann Pharmacother 40: 151-154. https://doi.org/10.1345/aph.1G336
  13. Chandini SK, Ganesan P, Bhaskar N. 2008. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem 107: 707-713. https://doi.org/10.1016/j.foodchem.2007.08.081
  14. Kang JY, Khan MNA, Park NH, Cho JY, Lee MC, Fujii H, Hong YK. 2008. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J Ethnopharmacol 116: 187-190. https://doi.org/10.1016/j.jep.2007.10.032
  15. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Kido M, Mori H, Nakayama Y, Takahashi M. 1989. Structure of an anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome Okamura and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem Pharm Bull 37: 349-353. https://doi.org/10.1248/cpb.37.349
  16. Lee SH, Min KH, Han JS, Lee DH, Park DB, Jung WK, Park PJ, Jeon BT, Kim SK, Jeon YJ. 2012. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. Food Chem Toxicol 50: 575-582. https://doi.org/10.1016/j.fct.2011.12.032
  17. Chung HY, Ma WC, Ang PO Jr, Kim JS, Chen F. 2003. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegate) collected in Hong Kong. J Agric Food Chem 51: 2619-2624. https://doi.org/10.1021/jf026082n
  18. Watanabe J, Kawabata J, Kurihara H, Niki R. 1997. Isolation and identification of alpha-glucosidase inhibitors from tochucha (Eucommia ulmoides). Biosci Biotechnol Biochem 61: 177-178. https://doi.org/10.1271/bbb.61.177
  19. Fautz R, Husen B, Hechenberger C. 1991. Application of the neutral red assay (NR assay) to monolayer cultures of primary hepatocytes: rapid colorimetric viability determination for the unscheduled DNA synthesis test (UDS). Mutat Res 253: 173-179. https://doi.org/10.1016/0165-1161(91)90130-Z
  20. Kim JS. 2004. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J Korean Soc Food Sci Nutr 33: 1133-1138. https://doi.org/10.3746/jkfn.2004.33.7.1133
  21. Prashanth D, Samiulla DS, Padmaja R. 2001. Effect of certain plant extracts on $\alpha$-amylase activity. Fitoterapia 72: 179-181. https://doi.org/10.1016/S0367-326X(00)00281-1
  22. Cheng AYY, Fantus IG. 2005. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J 172: 213-226. https://doi.org/10.1503/cmaj.1031414
  23. Hanefeld M, Schaper F. 2007. The role of alpha-glucosidase inhibitors (acarbose). In Pharmacotherapy of Diabetes: New Developments Improving Life and Prognosis for Diabetic Patients. Springer Science, New York, NY, USA. p 143-152.
  24. Abrahamson MJ. 2004. Optimal glycemic control in type 2 diabetes mellitus: fasting and postprandial glucose in context. Arch Intern Med 164: 486-491. https://doi.org/10.1001/archinte.164.5.486
  25. Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L, Owens D, Tajima N, Tuomilehto J. 2006. International Prandial Glucose Regulation Study Group. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis 16: 453-456. https://doi.org/10.1016/j.numecd.2006.05.006
  26. Inoue I, Takahashi K, Noji S, Awata T, Negishi K, Katayama S. 1997. Acarbose controls postprandial hyper-proinsulinemia in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 36: 143-151. https://doi.org/10.1016/S0168-8227(97)00045-4
  27. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kergel RS. 1987. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236: 582-585. https://doi.org/10.1126/science.2953071
  28. Lee SH, Park MH, Heo SJ, Kang SM, Ko SC, Han JS. 2010. Dieckol isolated from Ecklonia cava inhibits $\alpha$-glucosidase and $\alpha$-amylase in vitro and alleviates postprandial hyperglycemia in streptozocin-induced diabetic mice. Food Chem Toxicol 48: 2633-2637. https://doi.org/10.1016/j.fct.2010.06.032
  29. Nam JS, Lee WJ, Yoon IS, Kang MW, Jang HS, Youn JH, Kim BR, Kong HJ, Kim KH, Kim YH, Lee DS, Choi HJ. 2007. Effect of a brown algae extract on postprandial glucose control in neonatal diabetic and obese rats. J FASEB 21: 845.2.

Cited by

  1. Postprandial antihyperglycemic and antioxidant activities of Acalypha indica Linn stem extract: An in-vivo study vol.12, pp.47, 2016, https://doi.org/10.4103/0973-1296.191461
  2. Padina arborescensAmeliorates Hyperglycemia and Dyslipidemia in C57BL/KsJ-db/dbMice, a Model of Type 2 Diabetes Mellitus vol.18, pp.10, 2015, https://doi.org/10.1089/jmf.2014.3375
  3. Anti-diabetic potential of selected Malaysian seaweeds vol.27, pp.5, 2015, https://doi.org/10.1007/s10811-014-0462-8
  4. Padina arborescensextract protects high glucose-induced apoptosis in pancreatic β cells by reducing oxidative stress vol.8, pp.5, 2014, https://doi.org/10.4162/nrp.2014.8.5.494
  5. Thioflavin T effect in diabetic Wistar rats: Reporting the antihyperglycemic property of an amyloid probing dye vol.67, pp.2, 2015, https://doi.org/10.1016/j.pharep.2014.10.013
  6. Potential Bioactive Compounds from Seaweed for Diabetes Management vol.13, pp.8, 2015, https://doi.org/10.3390/md13085447
  7. Hypoglycemic activity of Gleditsia caspica extract and its saponin-containing fraction in streptozotocin-induced diabetic rats vol.71, pp.7, 2012, https://doi.org/10.1515/znc-2015-0151
  8. Chemical Composition and Evaluation of the α -Glucosidase Inhibitory and Cytotoxic Properties of Marine Algae Ulva intestinalis, Halimeda macroloba , and Sargassum ilicifolium vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/2753945