DOI QR코드

DOI QR Code

Antioxidant Activities of Ribes diacanthum Pall Extracts in the Northern Region of Mongolia

  • Birasuren, Bayarmaa (Department of Food & Nutrition, Chungnam National University) ;
  • Oh, Hye Lim (Department of Food & Nutrition, Chungnam National University) ;
  • Kim, Cho Rong (Department of Food & Nutrition, Chungnam National University) ;
  • Kim, Na Yeon (Department of Food & Nutrition, Chungnam National University) ;
  • Jeon, Hye Lyun (Department of Food & Nutrition, Chungnam National University) ;
  • Kim, Mee Ree (Department of Food & Nutrition, Chungnam National University)
  • Received : 2012.09.04
  • Accepted : 2012.12.08
  • Published : 2012.12.31

Abstract

Ribes diacanthum Pall (RDP) is a member of the Saxifragaceae family. The plant is traditionally used in Mongolia for the treatment of various ailments associated with kidney and bladder's diseases, cystitis, kidney stone, and edema. This study was aimed to investigate antioxidant activities of different solvent extracts of whole Pall plants, based on ferric-reducing antioxidant potential (FRAP), 2,2'-azinobis(3-ethybenzothiazoline-6-sulfonic acid) ($ABTS{\cdot}+$) radical scavenging activity, 1,1-diphenyl-2-picrydrazyl ($DPPH{\cdot}$), and hydroxyl (${\cdot}OH$) radical scavenging activities. Additionally, total flavonoids and phenolic contents (TPC) were also determined. The ethyl acetate extract of RDP (EARDP) had a remarkable radical scavenging capacity with an $IC_{50}$ value of 0.1482 mg/mL. In addition, EARDP was shown to be higher in total phenolic and flavonoid contents than the methanol extract of RDP (MRDP). Moreover, the EARDP had the predominant antioxidant capacity, DPPH, hydroxyl, and ABTS radical scavenging activities and ferric reducing power. These results suggest a potential for R. diacanthum Pall extract as a functional medicinal material against free-radical-associated oxidative damage.

Keywords

References

  1. Ligaa U, Davaasuren B, Ninjil N. 2006. Medicinal plants of Mongolia used in Western and Eastern medicine. JKC Printing, Ulaanbaatar, Mongolia. p 374.
  2. Lampe JW. 2003. Spicing up a vegeterian diet: chemoreceptive effects of phytochemicals. Am J Clin Nutr 78: 579S-583S. https://doi.org/10.1093/ajcn/78.3.579S
  3. Cai Y, Luo Q, Sun M, Corke H. 2004. Antioxidant activity and phenolics compounds of 112 Chinese medicinal plants associated with anticancer. Life Sci 74: 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
  4. Aruoma OI. 1998. Free radicals oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75: 199-212. https://doi.org/10.1007/s11746-998-0032-9
  5. Ames SN, Shigrenaga MK, Hagen TM. 1993. Oxidant, antioxidant and degenerative disease of aging. Proc Natl Acad Sci USA 90: 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  6. Cerutti PA. 1985. Prooxidant status and tumor promotion. Science 227: 379-381.
  7. Moskovitz J, Yim KA, Choke PB. 2002. Free radicals and disease. Arch Biochem Biophys 397: 354-359. https://doi.org/10.1006/abbi.2001.2692
  8. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C. 1995. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322: 339-346. https://doi.org/10.1006/abbi.1995.1473
  9. Silva BM, Andrade PB, Valentaoo P, Ferreres F, Seabra RM, Ferreria MA. 2004. Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and jam: antioxidant activity. J Agric Food Chem 52: 4705-4712. https://doi.org/10.1021/jf040057v
  10. Miller AL. 1996. Antioxidant flavonoids: structure, function and clinical usage. Alt Med Rev 1: 103-111.
  11. Tachakittirungrod S, Okonogi S, Chowwanapoonpohn S. 2007. Study on antioxidant activity of certain plants in Tailand: Mechanism of antioxidant action of guava leaf extract. Food Chem 103: 381-388. https://doi.org/10.1016/j.foodchem.2006.07.034
  12. Sun T, Ho CT. 2005. Antioxidant activities of buckwheat extracts. Food Chem 90: 743-749. https://doi.org/10.1016/j.foodchem.2004.04.035
  13. Silva EM, Souza JNS, Rogez H, Rees JF, Larondelle Y. 2007. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem 101: 1012-1018. https://doi.org/10.1016/j.foodchem.2006.02.055
  14. Kris-Etherton PM, Lefevre M, Beecher GR, Gross MD, Keen CL, Etherton TD. 2004. Bioactive compounds in nutrition and health-research methodologies for establishing biological function: the antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu Rev Nutr 24: 511-538. https://doi.org/10.1146/annurev.nutr.23.011702.073237
  15. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  16. Chae SK, Kang GS, Ma SJ, Bang KM, Oh SH, Oh SH. 2002. Standard Food Analysis. Jigu-moonwha Sa, Seoul, Korea. p 381-382.
  17. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  18. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 239: 70-79. https://doi.org/10.1006/abio.1996.0292
  19. Mazar D, Greenberg L, Shamir D, Meyerstein D, Meyerstein N. 2006. Antioxidant properties of bucillamine: Possible mode of action. Biochem Bioph Res Commun 349: 1171- 1175. https://doi.org/10.1016/j.bbrc.2006.08.155
  20. Re R, Pellegrini N, Proteggente A, Pannala M, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorizing assay. Free Radical Bio Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Kunchandy E, Rao MNA. 2002. Oxygen scavenging activity of curcumin. Int J Pharmacog 58: 237-240.
  22. Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. 1998. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46: 1887-1892. https://doi.org/10.1021/jf970975b
  23. Xia DZ, Yu XF, Zhu ZY, Zou ZD. 2011. Antioxidant activity and antibacterial activity of six edible wild plants (Sonchus spp.) in China. Nat Prod Res 9: 25-29.
  24. Yen GC, Duh PD, Tsai CL. 1993. Relationship between antioxidant activity and maturity of peanut hulls. J Am Oil Chem Soc 41: 67-70.
  25. Miliauskas G, Venskutonis PR, Van Beek TA. 2004. Screening of radical activity of some medicinal and aromatic plant extracts. Food Chem 85: 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007
  26. Javanmardi J. Stushnoff C, Locke E, Vivanco JM. 2003. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem 83: 547-550. https://doi.org/10.1016/S0308-8146(03)00151-1
  27. Naczk M, Grant S, Zademowski R, Barre E. 2006. Protein precipitating capacity of phenolics of wild blueberry leaves and fruits. Food Chem 96: 640-647. https://doi.org/10.1016/j.foodchem.2005.03.017
  28. Tabart J, Kevers C, Sipel A, Pincemail J, Defraigne JO, Dommes J. 2007. Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chem 105: 1268-1275. https://doi.org/10.1016/j.foodchem.2007.03.005
  29. Vagiri M, Ekholm A, Andersson SC, Johansson E, Rumpunen K. 2012. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.). J Agric Food Chem 60: 10501- 10510. https://doi.org/10.1021/jf303398z
  30. Maatta K, Kamal-Eldin A, Torronen R. 2001. Phenolic compounds in berries of black, red, green, and white currants (Ribes sp.). Antioxid Redox Signal 3: 981-993. https://doi.org/10.1089/152308601317203521
  31. Milivojevic J, Slatnar A, Mikulic Petkovsek M, Stampar F, Nikolic M, Veberic R. 2012. The Influence of early yield on the accumulation of major taste and health-related compounds in black and red currant cultivars (Ribes spp.). J Agric Food Chem 60: 2682-2691. https://doi.org/10.1021/jf204627m
  32. Raudsepp P, Kaldmae H, Kikas A, Libek AV, Pũ̈ssa T. 2010. Nutritional quality of berries and bioactive compounds in the leaves of black currant (Ribes nigrum L.) cultivars evaluated in Estonia. J Berry Res 1: 53-59.
  33. Tabart J, Kevers C, Evers D, Dommes J. 2011. Ascorbic acid, phenolic acid, flavonoid and carotenoid profiles of selected extracts from Ribes nigrum. J Agric Food Chem 59: 4763-4770. https://doi.org/10.1021/jf104445c
  34. Oszmiański J, Wojdylo A, Gorzelany J, Kapusta I. 2011. Identification and characterization of low-molecularweight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J Agric Food Chem 59: 12830-12835. https://doi.org/10.1021/jf203052j
  35. Gudej J, Tomczyk M. 2004. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch Pharmacol Res 27: 1114-1119. https://doi.org/10.1007/BF02975114
  36. Li WY, Chan SW, Yu PHF. 2007. Correlation between antioxidative power and anticancer activity in herbs from traditional Chinese medicine formulae with anticancer therapeutic effect. Pharmaceutical Biol 45: 541-546. https://doi.org/10.1080/13880200701498879
  37. Sancher-Moreno C. 2002. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 8: 121-137. https://doi.org/10.1177/1082013202008003770
  38. Amakura Y, Umino Y, Tsuji S, Togogai Y. 2000. Influence of jam processing on the radical scavenging activity and phenolic content in berries. J Agric Food Chem 48: 6292- 6297. https://doi.org/10.1021/jf000849z
  39. Wong PYY, Kitts DD. 2006. Studies on the dual antioxidant and antibacterial properties of parsley (Pertrosselium crispum) and cilantro (Coriandrum sativum) extracts. Food Chem 97: 505-515. https://doi.org/10.1016/j.foodchem.2005.05.031
  40. Tabart J, Kevers C, Pincemail J, Defraign JO, Dommes J. 2006. Antioxidant capacity of black currant varies with organ, season, and cultivar. J Agric Food Chem 54: 6271- 6276. https://doi.org/10.1021/jf061112y
  41. Cos P, Rajan P, Vedernikova L, Calomme M, Pieters L, Vlietinck AJ, Augustyns K, Haemers A, Berghe DV. 2002. In vitro antioxidant profile of phenolic acid derivatives. Free Radic Res 36: 711-716. https://doi.org/10.1080/10715760290029182
  42. Halliwell B, Gutteridge JMC. 1996. Free radicals, ageing, and disease. In Free Radicals in Biology and Medicine. Clarendon Press, London, UK. p 416-423.
  43. Wayne PA. 2002. NCCLS. Performance standards for antimicrobial susceptibility testing. 12th informational supplements. NCCS document. M100-512.
  44. Gordon MF. 1990. The mechanism of antioxidant action in vitro. In Food Antioxidants. Hudson BJF, ed. Elsevier, London, UK. p 1-18.
  45. Henríquez C, Carrasco-Pozo C, Gómez M, Brunser O, Speisky H. 2008. Slow and fast-reacting antioxidants from berries: their evaluation through the FRAP (ferric reducing antioxidant power) assay. Proceedings of the IXth International Rubus and Ribes Symposium, ISHS. Acta Horticulturae 777. Leuven, Pucon, Chile. December 1-7.
  46. Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. 2002. Anthocyanins, phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. J Agric Food Chem 50: 519-525. https://doi.org/10.1021/jf011062r
  47. Duh PD. 1998. Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free radical and active oxygen. J Am Oil Chem Soc 75: 455-461. https://doi.org/10.1007/s11746-998-0248-8
  48. Rufian-Henares JA, Morales FJ. 2007. Functional properties of melanoidins: In vitro antioxidant, antimicrobial, and antihypertensive activities. Food Res Int 40: 995-1002. https://doi.org/10.1016/j.foodres.2007.05.002
  49. Okawa M, Kinjo J, Nohara T, Ono M. 2001. DPPH (1,1- diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull 24: 1202-1205. https://doi.org/10.1248/bpb.24.1202
  50. Mates JM, Sanchez-Jimenez FM. 2000. Role of reactive oxygen in apoptosis: Implications for cancer therapy. Int J Biochem Cell Biol 32: 157-170. https://doi.org/10.1016/S1357-2725(99)00088-6
  51. Johnston JW, Harding K, Benson EE. 2007. Antioxidant status and genotypic tolerance of Ribes in vitro cultures cryopreservation. Plant Sci 172: 524-534. https://doi.org/10.1016/j.plantsci.2006.11.001

Cited by

  1. The protective effects of Ribes diacanthum Pall on cisplatin-induced nephrotoxicity in mice vol.178, 2016, https://doi.org/10.1016/j.jep.2015.10.003
  2. Ribemansides A and B, TRPC6 Inhibitors from Ribes manshuricum That Suppress TGF-β1-Induced Fibrogenesis in HK-2 Cells vol.81, pp.4, 2012, https://doi.org/10.1021/acs.jnatprod.7b01037
  3. Anti-Inflammatory Effects of Ribes diacanthum Pall Mediated via Regulation of Nrf2/HO-1 and NF-κB Signaling Pathways in LPS-Stimulated RAW 264.7 Macrophages and a TPA-Induced Dermatitis Animal vol.9, pp.7, 2012, https://doi.org/10.3390/antiox9070622