DOI QR코드

DOI QR Code

Explosion Hazards and Flame Velocity in Aluminum Powders

알루미늄 분체의 폭발위험성과 화염전파속도

  • Han, Ou-Sup (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Su-Hee (Occupational Safety & Health Research Institute, KOSHA)
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이수희 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2012.07.09
  • Accepted : 2012.09.26
  • Published : 2012.10.31

Abstract

An experimental study has been done to investigate the explosion characteristics of aluminum powders with different sizes and concentrations in a 20 L spherical explosion vessel. Two different sizes of aluminum powder were used : $15.1{\mu}m$ and $34.8{\mu}m$ with a volume mean diameter. The results revealed that $15.1{\mu}m$ Al powder has a Lower explosion limit (LEL) of $40g/m^3$, a maximun explosion pressure ($P_{max}$) of 9.8 bar and a maximum rate of pressure rise ($[dP/dt]_{max}$) of 1852 bar/s, in $34.8{\mu}m$ Al powder, LEL of $70g/m^3$, $P_{max}$ of 7.9 bar and $[dP/dt]_{max}$ of 322 bar/s. The LEL of Al powders tended to increase with the increase of particle size. Also, it was found that the flame velocity calculated from the powder with $15.1{\mu}m$ was about 5 times higher than that of the powder of $34.8{\mu}m$.

알루미늄 분진폭발특성에 미치는 입경과 농도 변화에 따른 영향을 20 L 구형 분진폭발시험장치를 사용하여 실험적으로 조사하였다. 실험에 사용한 알루미늄 분진의 체적 평균 입경은 15.1 및 $34.8{\mu}m$이다. 실험결과, 평균 입경 $15.1{\mu}m$에서의 폭발하한농도(LEL)는 $40g/m^3$, 최대폭발압력($P_{max}$)은 9.8 bar, 폭발압력상승속도는 ($[dP/dt]_{max}$)는 1852 bar/s이었으며, 평균입경 $34.8{\mu}m$의 경우에는 LEL이 $70g/m^3$, $P_{max}$는 7.9 bar, $[dP/dt]_{max}$는 322 bar/s가 얻어졌다. Al분진의 폭발하한농도는 입경 증가에 따라 증가하는 경향이 관찰되었다. 또한 평균입경 $15.1{\mu}m$에서의 Al분진폭발압력으로부터의 화염전파속도의 계산값은 평균입경 $34.8{\mu}m$의 경우보다 5배의 크기를 나타내었다.

Keywords

References

  1. 한우섭, "금속 퇴적분체의 화재폭발특성 연구, 2011-연구원-1397, 한국산업안전보건공단 산업안전보건연구원, (2011).
  2. May, D. C., & Berard, D. L., Fires and explosions associated with aluminum dust from finishing operations. Journal of Hazardous Materials, 17, pp.81-88 (1987). https://doi.org/10.1016/0304-3894(87)85043-4
  3. Marmo, L., Cavallero, D., & Dbernardi, M. L., Aluminum dust explosion risk analysis in metal workings. Journal of Loss Prevention in the Process Industries, 17, pp.449-465 (2004). https://doi.org/10.1016/j.jlp.2004.07.004
  4. Myers, T. J., Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation. Journal of Hazardous Materials, 159(1), pp.72-80 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.106
  5. Ballal, D. R., Flame propagation through dust clouds of carbon, coal, aluminium and magnesium in an environment of zero gravity, Proceedings of the Royal Society of London, A385, 21-51.(1983).
  6. Cashdollar, K. L., Flammability of metals and other elemental dusts. Process Safety Progress, 13, pp.139-145 (1994). https://doi.org/10.1002/prs.680130306
  7. Dreizin, E. L., Experimental study of stages in aluminum particle combustion in air. Combustion and Flame, 105, pp.541-556 (1996). https://doi.org/10.1016/0010-2180(95)00224-3
  8. Cashdollar, K. L., Overview of dust explosibility characteristics. Journal of LossPrevention in the Process Industries, 13, pp.183-199 (2000). https://doi.org/10.1016/S0950-4230(99)00039-X
  9. Kwok, Q. S. M., Fouchard, R. C., Turcotte, A., Lightfoot, P. D., Bowes, R., &Jones, D. E. G., Characterization of aluminum nanopowder compositions. Propellants, Explosives, Pyrotechnics, 27, pp.229-240 (2002). https://doi.org/10.1002/1521-4087(200209)27:4<229::AID-PREP229>3.0.CO;2-B
  10. Eapen, B. Z., Hoffmann, V. K., Schoenitz, M., & Dreizin, E. L., Combustion of aerosolized spherical aluminum powders and flakes in air. Combustion Scienceand Technology, 176(7), pp.1055-1069 (2004). https://doi.org/10.1080/00102200490426433
  11. Baudry, G., Bernard, S., & Gillard, P., Influence of the oxide content on the ignition energies of aluminum powders. Journal of Loss Prevention in the Process Industries, 20(4-6), pp.330-336 (2007). https://doi.org/10.1016/j.jlp.2007.04.025
  12. O. Dufaud, M. Traore, L. Perrin, S. Chazelet, D. Thomas, Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere, Journal of Loss Prevention in the Process Industries, 23, pp. 226-236 (2010). https://doi.org/10.1016/j.jlp.2009.07.019
  13. Rai, A., Park, K., Zhou, L., & Zachariah, M. R., Understanding the mechanism of aluminum nanoparticles oxidation. Combustion Theory and Modelling, 10(5), pp.843-859 (2006). https://doi.org/10.1080/13647830600800686
  14. Kolbe, M., Laminar burning velocity measurements of stabilized aluminum dust flames. Master of Applied Science, Montreal Quebec: Concordia University (2001).
  15. Eckhoff, R.K., "Dust Explosion in the Process Industries ; 3rd ed.", BH (2003).
  16. 한우섭. 한인수. 최이락. 이근원, 반응성 유기물 분진의 폭발특성과 열안정성, 한국가스학회지, Vol.15, No. 4, pp.7-14 (2011). https://doi.org/10.7842/kigas.2011.15.4.007

Cited by

  1. Hazard Evaluation on Fire and Explosion Characteristics of Resorcinol vol.17, pp.4, 2013, https://doi.org/10.7842/kigas.2013.17.4.45