DOI QR코드

DOI QR Code

Performance Comparison of Heat Transfer Plates for Cooling Tower Air Heater Through Numerical Analysis

냉각탑 공기가열기용 전열판의 수치해석적 성능 비교

  • Lee, Eul-Jong (Department of Mechanical System Engineering, University of Incheon) ;
  • Kim, Jung-Sik (Division of Technical Innovation, Incheon Technopark) ;
  • Kim, Nae-Hyun (Department of Mechanical System Engineering, University of Incheon)
  • 이을종 (인천대학교 기계시스템공학과) ;
  • 김정식 ((재)인천테크노파크 기술혁신본부) ;
  • 김내현 (인천대학교 기계시스템공학과)
  • Received : 2012.09.19
  • Accepted : 2012.12.06
  • Published : 2012.12.31

Abstract

In this study, numerical analysis was performed on three shapes of heat transfer plates (chevron, wave and dimple type), which are currently used as fillers of cooling towers. Results show that heat transfer rates per consumed power were larger for enhanced plates as compared with that of plain plate. Highest heat transfer coefficient was obtained for wave shape followed by chevron and dimple shape. For wave shape, cross corrugations induced significant mixing of fluids, which enhanced the heat transfer. Friction factor yielded a similar trend with the heat transfer coefficient. However, heat transfer rate and pressure drop per sheet was the largest for chevron shape, due to the largest heat transfer area per sheet.

본 연구에서는 백연방지용 냉각탑의 공기가열기 적용을 목적으로 현재 냉각탑의 충진재로 적용되고 있는 쉐브론형, 웨이브형 그리고 딤플형 전열판 형상에 대한 수치해석을 수행하였다. 해석 결과 동일 소비동력 대비 전열량은 평판보다 고성능 전열판에서 높게 나타났다. 열전달계수는 웨이브 형상에서 가장 크고 쉐브론 형상, 딤플 형상 순으로 나타났다. 웨이브 형상의 경우 교차하는 절곡형상 사이의 왕성한 혼합유동이 열전달 계수를 증진시킨 것으로 판단된다. 마찰계수는 열전달계수와 유사한 경향을 보였다. 하지만 동일 크기 쉬트에서의 전열량 및 압력손실은 쉐브론형에서 가장 크게 나타났다. 이는 쉐브론 형상의 전열면적이 다른 형상에 비하여 월등히 크기 때문이다.

Keywords

References

  1. S. M. Zivi and B. B. Brand, An Analysis of the Crossflow Cooling Tower, Refrigerationg Engineering, Vol. 64, pp. 31-34 and 90-92, 1956.
  2. D. R. Baker and H. A. Shryock, A Comprehensive Approach to the Analysis of Cooling Tower Performance, J. Heat Transfer, Vol. 83, pp. 339-349, 1961. Article(CrossRefLink) https://doi.org/10.1115/1.3682276
  3. J. C. Campbell., The Prevention of Fog from Cooling Towers, Annual Meeting of the Coolìng Tower Institute, Houston, 1976.
  4. C. K. Choi., Y. K. Choi., and H. Y. So., A Numerical Study on the Performance Analysis of the Plume Abatement NWD Cooling Tower, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 11. pp. 1049-1058. 2001.
  5. Clearflow Application, Users Manual, Marley Cooling Technologies Inc, 2005.
  6. A. Cooper and J. D. Usher, Plate Heat Exchangers, in Heat Exchanger Design Handbook, Hemisphere Publisher, New York, Chap. 3.7, 1983.
  7. M. Ciafalo, J. Stasiek and M. W. Collins, Investigation of Flow and Heat Transfer in Corrugated Passages, Int. J. Heat Mass Transfer, Vol. 39, pp. 165-192. 1996. Article(CrossRefLink) https://doi.org/10.1016/S0017-9310(96)85014-9
  8. B. Sunden, Flow and Heat Transfer Mechanisms in Plate-Frame Heat Exchangers, in Heat Transfer Enhancement of Heat Exchangers, Kluwer Academic Pub., pp. 185-206, 1999.
  9. K. H. Lee, W. Y. Choi, J. H. Lee and H. Y. So, Comparison of performance of cooling water with various shape of packings, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 10, pp. 358-367, 1998.
  10. S. Y. Yoo, M. H. Chung, K. H. Kim and J. M. Lee, An Experimental Study on the Performance of Plastic Plate Heat Exchanger, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 17, pp. 117-124, 2005.
  11. S. Y. Yoo, M. H. Chung and Y. M. Lee, A Study on the Factors Affecting the Performance of Plastic Plate Heat Exchanger, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 17, pp. 839-848, 2005.
  12. M. H. Chung, S. Y. Yoo, K. H. Han and H. I. Yoon, A Numerical Study on the Flow and Heat Transfer Characteristics of Plastic Plate Heat Exchanger, Proceedings of the Summer Annual Conference, SAREK, pp. 1366-1371, 2008.
  13. M. Kim, J.-H. Lee, S. R. Park, H. S. Ra, J. H. Jeong and H. Lim, Experimental Investigation of an Cross-Flow Air-Cooled Heat Exchanger with Single-Wave and Double-Wave Plates, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 21, pp. 347-354,
  14. H. J. Ahn, S. H. Lee, N. Hur, H. J. Park and H. S. Ryu, 2010, A Numerical Simulation of Flow and Heat Transfer in a Dimpled-Type Plate Heat Exchanger, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 22, pp. 149-155, 2009.
  15. Fluent 12, ANSYS, http://www.ansys.com.
  16. W. M. Kays., and M. E. Crawfod., Convective Heat and Mass Transfer, 3rd ed., McGraw-Hill Pub., 1993.
  17. R. K. Shah., and A. L. London, Laminar Flow Forced Convection in a Duct, Academic Pub., New York, 1978.
  18. R. L. Webb and N. H. Kim, Principles of Enhanced Heat Transfer, 2nd ed., Taylor & Francis Pub., London, 2005.