HARMONIC MAPPINGS WITH ANALYTIC FUNCTIONS

Sook Heui Jun

Abstract

In this paper, we study harmonic, orientation-preserving, univalent mappings defined on $\Delta=\{z:|z|>1\}$ that have real coefficients or starlike analytic functions and obtain some coefficients bounds.

1. Introduction

A continuous function $f=u+i v$ defined in a domain $\mathrm{D} \subseteq \mathbb{C}$ is harmonic in D if u and v are real harmonic in D . We consider complexvalued, harmonic, orientation-preserving, univalent mappings f defined on $\Delta=\{z:|z|>1\}$, that are normalized at infinity by $f(\infty)=\infty$. Such functions admit the representation

$$
f(z)=h(z)+\overline{g(z)}+A \log |z|
$$

where

$$
h(z)=\alpha z+\sum_{k=0}^{\infty} a_{k} z^{-k} \text { and } g(z)=\beta z+\sum_{k=1}^{\infty} b_{k} z^{-k}
$$

are analytic in Δ and $0 \leq|\beta|<|\alpha|$. In addition, $a=\overline{f_{\bar{z}}} / f_{z}$ is analytic
Received September 24, 2012. Revised October 30, 2012. Accepted November 5, 2012.

2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: harmonic mapping.
This work was supported by a research grant from Seoul Women's University(2012).
(c) The Kangwon-Kyungki Mathematical Society, 2012.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Conercial License (http://creativecommons.org/licenses/by$\mathrm{nc} / 3.0 /$) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
and satisfies $|a(z)|<1$. Also one can easily show that $|A| / 2 \leq|\alpha|+|\beta|$ by using the bound $\left|s_{1}\right| \leq 1-\left|s_{0}\right|^{2}$ for analytic function $a=s_{0}+s_{1} z^{-1}+\cdots$ in Δ that are bounded by one. By applying an affine post-mapping to f we may normalize f so that $\alpha=1, \beta=0$, and $a_{0}=0$. Therefore let Σ be the set of all harmonic, orientation-preserving, univalent mappings

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}+A \log |z| \tag{1.1}
\end{equation*}
$$

of Δ, where

$$
h(z)=z+\sum_{k=1}^{\infty} a_{k} z^{-k} \text { and } g(z)=\sum_{k=1}^{\infty} b_{k} z^{-k}
$$

are analytic in Δ and $A \in \mathbb{C}$. Hengartner and Schober[2] used the representation (1.1) to obtain coefficient bounds and distortion theorems. Some coefficients bounds for $f \in \Sigma$ also obtained by Jun[3].

In this article, we continue to investigate harmonic, orientation-preserving, univalent mappings f in Σ to get coefficients bounds for f with some restrictions. In next section we consider univalent harmonic mappings $f \in \Sigma$ with real A which have real coefficients and obtain estimates

$$
\left|b_{n}-a_{n}\right| \leq n\left|1+b_{1}-a_{1}\right| \quad \text { for } n \geq 2
$$

Also $f \in \Sigma$ with starlike analytic functions $h+g$ will be considered in section 3.

2. Harmonic mappings with real coefficients

Theorem 2.1. If $f \in \Sigma$ with real A has real coefficients, then

$$
\left|b_{n}-a_{n}\right| \leq n\left|1+b_{1}-a_{1}\right| \quad \text { for } n \geq 2 \text {. }
$$

Proof. For $z=r e^{i \theta}, r>1$,

$$
\begin{equation*}
\operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\}=\sum_{k=1}^{\infty} c_{k} \sin k \theta \tag{2.1}
\end{equation*}
$$

where $c_{1}=r+\left(b_{1}-a_{1}\right) r^{-1}$ and $c_{k}=\left(b_{k}-a_{k}\right) r^{-k}$ for $k \geq 2$. Multiply $\sin n \theta$ to (2.1) and integrate from 0 to π, then we have

$$
\begin{aligned}
& \frac{2}{\pi} \int_{0}^{\pi} \operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\} \sin n \theta d \theta \\
& =\frac{2}{\pi} \int_{0}^{\pi}\left(\sum_{k=1}^{\infty} c_{k} \sin k \theta\right) \sin n \theta d \theta=\frac{2}{\pi} \int_{0}^{\pi} c_{n} \sin ^{2} n \theta d \theta \\
& =c_{n}
\end{aligned}
$$

From the relationship

$$
|\sin (n+1) \theta|=|\sin n \theta \cos \theta+\cos n \theta \sin \theta| \leq|\sin n \theta|+|\sin \theta|
$$

we can show that $|\sin n \theta| \leq n|\sin \theta|$ by the mathematical induction. Thus we have

$$
\begin{align*}
\left|c_{n}\right| & =\left|\frac{2}{\pi} \int_{0}^{\pi} \operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\} \sin n \theta d \theta\right| \tag{2.2}\\
& \leq \frac{2}{\pi} \int_{0}^{\pi}\left|\operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\}\right||\sin n \theta| d \theta \\
& \leq \frac{2 n}{\pi} \int_{0}^{\pi}\left|\operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\}\right| \sin \theta d \theta
\end{align*}
$$

The univalence of f implies that $0 \neq f\left(r e^{i \theta}\right)-f\left(r e^{-i \theta}\right)$ since $r e^{i \theta} \neq r e^{-i \theta}$ for $0<\theta<\pi$. From $0 \neq f\left(r e^{i \theta}\right)-f\left(r e^{-i \theta}\right)=2 i \operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\}$, we have $\operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\} \neq 0$. Since $\operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\}$ is a continuous function of θ, it must be of same sign in the interval $0<\theta<\pi$. Thus

$$
\begin{aligned}
& \frac{2}{\pi} \int_{0}^{\pi}\left|\operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\}\right| \sin \theta d \theta \\
& =\left|\frac{2}{\pi} \int_{0}^{\pi} \operatorname{Im}\left\{f\left(r e^{i \theta}\right)\right\} \sin \theta d \theta\right| \\
& =\left|c_{1}\right| \\
& =\left|r+\frac{b_{1}-a_{1}}{r}\right| .
\end{aligned}
$$

Substituting this into (2.2), we have

$$
\left|c_{n}\right| \leq n\left|r+\frac{b_{1}-a_{1}}{r}\right|
$$

where $c_{1}=r+\frac{b_{1}-a_{1}}{r}$ and $c_{n}=\frac{b_{n}-a_{n}}{r^{n}}$ for $n \geq 2$. Letting $r \rightarrow 1$, we obtain $\left|b_{n}-a_{n}\right| \leq n\left|1+b_{1}-a_{1}\right|$ for $n \geq 2$.

3. Starlike analytic functions

Definition 3.1. A function $H(z)$ is starlike if each radial line from the origin hits the boundary $\partial H(\Delta)$ in exactly one point of $\mathbb{C} \backslash\{0\}$.

Let Σ^{*} be the set of all harmonic, orientation-preserving, univalent mappings $f \in \Sigma$ which have starlike analytic functions $h+g$.

Theorem 3.2. If $f \in \Sigma^{*}$, then $\sum_{k=1}^{\infty} k\left|a_{k}+b_{k}\right|^{2} \leq 1$.
Proof. A starlike function $H(z)=h+g=z+\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right) z^{-k}$ is characterized by the condition

$$
\frac{\partial}{\partial \theta}\left\{\arg H\left(r e^{i \theta}\right)\right\}>0
$$

for $r>1$. But $\arg H\left(r e^{i \theta}\right)=\operatorname{Im}\left\{\log H\left(r e^{i \theta}\right)\right\}$, so that

$$
\frac{\partial}{\partial \theta}\left(\operatorname{Im}\left\{\log H\left(r e^{i \theta}\right)\right\}\right)=\operatorname{Im}\left\{\frac{\partial}{\partial \theta} \log H\left(r e^{i \theta}\right)\right\}=\operatorname{Re}\left\{\frac{z H^{\prime}}{H}\right\}>0 .
$$

From this, we have that

$$
\left|\frac{1-\frac{z H^{\prime}}{H}}{1+\frac{z H^{\prime}}{H}}\right|<1 .
$$

Thus

$$
\begin{equation*}
\left|H-z H^{\prime}\right|^{2}<\left|H+z H^{\prime}\right|^{2} . \tag{3.1}
\end{equation*}
$$

An integration of the left side of (3.1) gives

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|H\left(r e^{i \theta}\right)-r e^{i \theta} H^{\prime}\left(r e^{i \theta}\right)\right|^{2} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(H\left(r e^{i \theta}\right)-r e^{i \theta} H^{\prime}\left(r e^{i \theta}\right)\right) \overline{\left(H\left(r e^{i \theta}\right)-r e^{i \theta} H^{\prime}\left(r e^{i \theta}\right)\right)} d \theta \\
& =\sum_{k=1}^{\infty}(k+1)^{2}\left|a_{k}+b_{k}\right|^{2} r^{-2 k} .
\end{aligned}
$$

An integration of the right side of (3.1) gives

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|H\left(r e^{i \theta}\right)+r e^{i \theta} H^{\prime}\left(r e^{i \theta}\right)\right|^{2} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(H\left(r e^{i \theta}\right)+r e^{i \theta} H^{\prime}\left(r e^{i \theta}\right)\right) \overline{\left(H\left(r e^{i \theta}\right)+r e^{i \theta} H^{\prime}\left(r e^{i \theta}\right)\right)} d \theta \\
& =4 r^{2}+\sum_{k=1}^{\infty}(1-k)^{2}\left|a_{k}+b_{k}\right|^{2} r^{-2 k} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|H\left(r e^{i \theta}\right)-r e^{i \theta} H^{\prime}\left(r e^{i \theta}\right)\right|^{2} d \theta \\
& <\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|H\left(r e^{i \theta}\right)+r e^{i \theta} H^{\prime}\left(r e^{i \theta}\right)\right|^{2} d \theta
\end{aligned}
$$

implies that

$$
\sum_{k=1}^{\infty}(k+1)^{2}\left|a_{k}+b_{k}\right|^{2} r^{-2 k}<4 r^{2}+\sum_{k=1}^{\infty}(1-k)^{2}\left|a_{k}+b_{k}\right|^{2} r^{-2 k} .
$$

Simplify this, then we obtain

$$
\sum_{k=1}^{\infty} 4 k\left|a_{k}+b_{k}\right|^{2} r^{-2 k}<4 r^{2}
$$

for $r>1$. Letting $r \rightarrow 1$, we have that

$$
\sum_{k=1}^{\infty} k\left|a_{k}+b_{k}\right|^{2} \leq 1
$$

Theorem 3.3. If $f \in \Sigma^{*}$, then analytic function $H(z)=h(z)+g(z)$ is univalent.

Proof. Let $G(\zeta)=\{H(1 / \zeta)\}^{-1}$ for $|\zeta|<1$. Then

$$
G(\zeta)=\zeta-\left(a_{1}+b_{1}\right) \zeta^{3}-\left(a_{2}+b_{2}\right) \zeta^{4}+\cdots
$$

is analytic in $|\zeta|<1$ and satisfies that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\zeta G^{\prime}(\zeta)}{G(\zeta)}\right\}=\operatorname{Re}\left\{\frac{z H^{\prime}(z)}{H(z)}\right\}>0 \tag{3.2}
\end{equation*}
$$

If $G\left(\zeta_{0}\right)=0$ at some point $0<\left|\zeta_{0}\right|<1$, then $\zeta\left[G^{\prime}(\zeta) / G(\zeta)\right]$ has a simple pole at ζ_{0}. This means that $\operatorname{Re}\left\{\zeta\left[G^{\prime}(\zeta) / G(\zeta)\right]\right\}$ takes on arbitrarily large negative values, contradicting to (3.2). Thus $G(\zeta)$ has no zeros in $|\zeta|<1$ other than a simple zero at the origin. Let $0<r<1$. Since $G(\zeta)$ has one zero and no poles in $|\zeta| \leq r$, the argument principle tells us that $\Delta_{|\zeta|=r} \arg G(\zeta)=2 \pi$. That is, the circle $|\zeta|=r$ is mapped by $G(\zeta)$ onto a closed contour C_{r} that winds around the origin once. Since $\arg G(\zeta)$ increases with $\arg \zeta$, the curve cannot intersect itself. Hence C_{r} is a simple closed contour. That is, $G(\zeta)$ is univalent on the circle $|\zeta|=r$ and therefore $G(\zeta)$ is univalent in $|\zeta| \leq r$. Since r is arbitrary, the function $G(\zeta)$ is univalent in the unit disk $\mathbb{D}=\{\zeta:|\zeta|<1\}$. This implies that $H(z)$ is univalent.

Theorem 3.4. If $f \in \Sigma^{*}$, then $\left|a_{n}+b_{n}\right| \leq \frac{1}{\sqrt{n}}$.
Proof. $f \in \Sigma^{*}$ implies that $H(z)=h+g=z+\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right) z^{-k}$ is univalent analytic function in Δ by Theorem 3.3. Thus we get $\left|a_{1}+b_{1}\right| \leq$ 1 from [1] and $\sum_{k=1}^{\infty} k\left|a_{k}+b_{k}\right|^{2} \leq 1$ from Theorem 3.2.

$$
n\left|a_{n}+b_{n}\right|^{2} \leq 1-\left|a_{1}+b_{1}\right|^{2} \leq 1
$$

for $n \geq 2$ and so $\left|a_{n}+b_{n}\right| \leq \frac{1}{\sqrt{n}}$.
Corollary 3.5. If $f \in \Sigma^{*}$ and $\operatorname{Re}\left\{a_{1}+b_{1}\right\} \leq \frac{n t^{2}-1}{n t^{2}+1}$ for $t>0$, then

$$
\operatorname{Re}\left\{t\left(a_{1}+b_{1}\right)-\left(a_{n}+b_{n}\right)\right\} \leq t \quad \text { for } \quad n \geq 2 .
$$

Proof. In the proof of Theorem 3.4, we know that $n\left|a_{n}+b_{n}\right|^{2} \leq 1-$ $\left|a_{1}+b_{1}\right|^{2} \leq 1$ for $n \geq 2$ and so $\left|a_{n}+b_{n}\right| \leq \frac{\sqrt{1-\left|a_{1}+b_{1}\right|^{2}}}{\sqrt{n}}$. Hence

$$
\begin{aligned}
& \operatorname{Re}\left\{t\left(a_{1}+b_{1}\right)-\left(a_{n}+b_{n}\right)\right\} \\
& \leq t \operatorname{Re}\left\{a_{1}+b_{1}\right\}+\frac{1}{\sqrt{n}} \sqrt{1-\left|a_{1}+b_{1}\right|^{2}} \\
& \leq t \operatorname{Re}\left\{a_{1}+b_{1}\right\}+\frac{1}{\sqrt{n}} \sqrt{1-\left(\operatorname{Re}\left\{a_{1}+b_{1}\right\}\right)^{2}} .
\end{aligned}
$$

Let $x=\operatorname{Re}\left\{a_{1}+b_{1}\right\}$, then $\operatorname{Re}\left\{t\left(a_{1}+b_{1}\right)-\left(a_{n}+b_{n}\right)\right\} \leq t x+\frac{1}{\sqrt{n}} \sqrt{1-x^{2}}$. The function $F(x)=t x+\frac{1}{\sqrt{n}} \sqrt{1-x^{2}}$ is increasing for $-1 \leq x \leq \frac{n t^{2}-1}{n t^{2}+1}$ and therefore $\operatorname{Re}\left\{t\left(a_{1}+b_{1}\right)-\left(a_{n}+b_{n}\right)\right\} \leq t$ for $n \geq 2$.

Corollary 3.6. If $f \in \Sigma^{*}$ and $\operatorname{Re}\left\{a_{1}+b_{1}\right\} \leq \frac{n^{3}-1}{n^{3}+1}$, then

$$
\operatorname{Re}\left\{n\left(a_{1}+b_{1}\right)-\left(a_{n}+b_{n}\right)\right\} \leq n
$$

Proof. Set $t=n$ in Corollary 3.5.
Corollary 3.7. If $f \in \Sigma^{*}$, then $\operatorname{Re}\left\{n\left(a_{1}+b_{1}\right)-\left(a_{n}+b_{n}\right)\right\} \leq n$ for all n sufficiently large depending on f.

Proof. Fix f. If $\operatorname{Re}\left\{a_{1}+b_{1}\right\}=1$, then $a_{n}+b_{n}=0$ for all $n \geq 2$ by Theorem 3.2 and the result holds for all $n \geq 2$. If $\operatorname{Re}\left\{a_{1}+b_{1}\right\}<1$, then $\operatorname{Re}\left\{a_{1}+b_{1}\right\} \leq \frac{n n^{2}-1}{n n^{2}+1}$ for all n sufficiently large since $\left(n^{3}-1\right) /\left(n^{3}+1\right) \rightarrow 1$ as $n \rightarrow \infty$. In this case the result follows from Corollary 3.6.

References

[1] T.H. Gronwall, Some remarks on conformal representation, Ann. of Math. 16 (1914-15), 72-76.
[2] W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
[3] S.H. Jun, Univalent harmonic mappings on $\Delta=\{z:|z|>1\}$, Proc. Amer. Math. Soc. 119 (1993), 109-114.

Department of Mathematics
Seoul Women's University
Seoul 139-774, Korea
E-mail: shjun@swu.ac.kr

