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MINIMAL CLOZ-COVERS AND BOOLEAN ALGEBRAS

ChangIl Kim

Abstract. In this paper, we first show that for any space X, there
is a Boolean subalgebra G(zX) of R(X) containg G(X). Let X be
a strongly zero-dimensional space such that z−1

β (X) is the minimal

cloz-coevr of X, where (Ecc(βX), zβ) is the minimal cloz-cover of
βX. We show that the minimal cloz-cover Ecc(X) of X is a subspace
of the Stone space S(G(zX)) of G(zX) and that Ecc(X) is a strongly
zero-dimensional space if and only if βEcc(X) and S(G(zX)) are
homeomorphic. Using these, we show that Ecc(X) is a strongly
zero-dimensional space and G(zX) = G(X) if and only if βEcc(X) =
Ecc(βX).

1. Introduction

All spaces in this paper are Tychonoff spaces and βX denotes the
Stone-Čech compactification of a space X .

Iliadis constructed the absolute of Hausdorff spaces, which is the mini-
mal extremally disconnected cover of Hausdorff spaces and they turn out
to be the perfect onto projective covers([5]). To generalize extremally
disconnected spaces, basically disconnected spaces, quasi-F spaces and
cloz-spaces have been introduced and their minimal covers have been
studied by various aurthors([2], [3], [4], [9]). In these ramifications, min-
imal covers of compact spaces can be nisely characterized.
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In particular, Henriksen, Vermeer and Woods ([3]) introduced the
notion of cloz-spaces and they showed that every compact space X has
a minimal cloz-cover (Ecc(X), zX). Open questions in the theory of cloz-
spaces concerns with the minimal cloz-covers of non-compact spaces and
the relation between Ecc(βX) and Ecc(X)([3]). For this problem, we
have partial answers in [6] and [7]. Indeed, it is shown that for a weakly
Lindelöf space X, βEcc(X) = Ecc(βX)([4], [6]) and every spaces has a
minimal cloz-cover([7]).

In this paper, we first show that for any space X, there is a Boolean
subalgebra G(zX) of R(X) such that G(X) ⊆ G(zX). Let X be a strongly
zero-dimensional space such that z−1β (X) is the minimal cloz-cover of
X. We show that Ecc(X) is a subspace of the Stone space S(G(zX))
of G(zX) and that βEcc(X) is a zero-dimensional space if and only if
βEcc(X) and S(G(zX)) are homeomorphic. Finally, we show that Ecc(X)
is a strongly zero-dimensional space and G(zX) = G(X) if and only if
βEcc(X) = Ecc(βX)..

For the terminology, we refer to [1] and [8].

2. Minimal cloz-covers and Boolean algebras

The set R(X) of all regular closed sets in a space X, when partially
ordered by inclusion, becomes a complete Boolean algebra, in which the
join, meet, and complementation operations are defined as follows : for
any A ∈ R(X) and any {Ai | i ∈ I} ⊆ R(X),
∨{Ai | i ∈ I} = clX(∪{Ai | i ∈ I}),
∧{Ai | i ∈ I} = clX(intX(∩{Ai | i ∈ I})), and
A′ = clX(X − A)

and a sublattice of R(X) is a subset of R(X) that contains ∅, X and is
closed under finite joins and meets.

Recall that a map f : Y −→ X is called a covering map if it is a
continuous, onto, perfect, and irreducible map.

Lemma 2.1. ([6])
(1) Let f : Y −→ X be a covering map. Then the map ψ : R(Y ) −→
R(X), defined by ψ(A) = A ∩ X, is a Boolean isomorphism and the
inverse map ψ−1 of ψ is given by

ψ−1(B) = clY (f−1(intX(B))) = clY (intY (f−1(B))).
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(2) Let X be a dense subspace of a space K. Then the map φ : R(K) −→
R(X), defined by φ(A) = A ∩ X, is a Boolean isomorphism and the
inverse map φ−1 of φ is given by φ−1(B) = clK(B).

Definition 2.2. Let X be a space.
(1) A cozero-set C in X is said to be a complemented cozero-set in X if
there is a cozero-set D in X such that C ∩D = ∅ and C ∪D is a dense
subset of X. In case, {C,D} is called a complemented pair of cozero-sets
in X.

(2) Let G(X) = {clX(C) | C is a complemented cozero-set in X}.

Let X be a space and Z(X)# = {clX(intX(A)) | A is a zero-set in X}.
Suppose that {C,D} is a complemented pair of cozero-sets in X. Then
clX(C) = clX(X−D) and since clX(X−D) ∈ Z(X)#, clX(C) ∈ Z(X)#.
Hence G(X) = {A ∈ Z(X)# | A′ ∈ Z(X)#} and G(X) is a Boolean
subalgebra of R(X).

Since X is C∗-embedded in βX, by Lemma 2.1., G(X) and G(βX)
are Boolean isomorphic.

Definition 2.3. ([3]) A space X is called a cloz-space if every element
of G(X) is a clopen set in X.

A space X is a cloz-space if and only if βX is a cloz-space([3]).

Definition 2.4. Let X be a space.
(1) A pair (Y, f) is called a cloz-cover of X if Y is a cloz-space and
f : Y −→ X is a covering map.

(2) A cloz-cover (Y, f) of X is called a minimal cloz-cover of X if for
any cloz-cover (Z, g) of X, there is a covering map h : Z −→ Y with
f ◦ h = g.

Let B be a Boolean subalgebra of R(X). Let S(B) = {α | α is a
B-ultrafilter} and for any B ∈ B, let ΣBB = {α ∈ S(B) | B ∈ α}. Then
the space S(B), equipped with the topology for which {ΣBB | B ∈ B}
is a base, called the Stone-space of B. Then S(B) is a compact, zero-
dimensional space([8]).

Henriksen, Vermeer and Woods showed that every compact space has
the minimal cloz-cover. Let X be a compact space, S(G(X)) the Stone-
space of G(X) and Ecc(X) = {(α, x) | x ∈ ∩{A | A ∈ α}} the subspace
of the product space S(G(X)) × X. Then (Ecc(X), zX) is the minimal
cloz-cover of X, where zX((α, x)) = x([3]).
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A space X is called a weakly Lindelöf space if for any open cover U
of X, there is a countable subfamily V of U such that ∪{V | V ∈ V} is
a dense subset of X.

Let X be a weakly Lindelöf space. Then Ecc(X) is the subspace
{(α, x) ∈ S(G(βX)) × X | x ∈ ∩{A | A ∈ α}} of S(G(βX)) × X and
Ecc(X) is a dense C∗-embedded subspace of Ecc(βX), that is, βEcc(X) =
Ecc(βX)([4], [6]). Moreover, it was shown that every space has a minimal
cloz-cover([7]).

Let X be a space. Since G(X) and G(βX) are Boolean isomorphic,
S(G(X)) and S(G(βX)) are homeomorphic.

Let X, Y be spaces and f : Y −→ X a map. For any U ⊆ X, let
fU : f−1(U) −→ U denote the restriction and co-restriction of f with
respect to f−1(U) and U , respectively.

For any space X, let (Ecc(βX), zβ) denote the minimal cloz-cover of
βX.

Lemma 2.5. ([6]) Let X be a space. If z−1β (X) is a cloz-space, then

(z−1β (X), zβX ) is the minimal cloz-cover of X.

For any covering map f : Y −→ X, let G(f) = {clY (intX(f(A))) |
A ∈ G(Y )}. Since R(Ecc(X)) and R(X) are isomorphic and G(Ecc(X))
is a Boolean algebra, by Lemma 2.1, G(zX) is a Boolean algebra.

Definition 2.6. Let X be a space and B a sublattice of R(X). Then
a B-filter F is called fixed if ∩{F | F ∈ F} 6= ∅.

Let X be a space and for any G(zX)-ultrafilter α, let αc = {A ∈
G(Ecc(X)) | zX(A) ∈ α}.

Proposition 2.7. Let X be a space. Then we have the following :
(1) G(zX) is a Boolean subalgebra of R(X) such that G(X) ⊆ G(zX).
(2) Suppose that α is a fixed G(zX)-ultrafilter. Then αc is a fixed G(Ecc(X))-
ultrafilter.

Proof. (1) Clearly, G(zX) is a Boolean subalgebra of R(X). Let
{C,D} be a complemented pair of cozero-sets in X. Since zX is a con-
tinuous map, z−1X (C) and z−1X (D) are cozero-sets in Ecc(X) such that
z−1X (C) ∩ z−1X (D) = ∅ and z−1X (C) ∪ z−1X (D) is dense in Ecc(X), because
zX is irreducible. That is, {z−1X (C), z−1X (D)} is a complemented pair of
cozero-sets in Ecc(X). Since zX(clEcc(X)(z

−1
X (C))) = clX(C) ∈ G(zX),

G(X) ⊆ G(zX).
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(2) Clearly, αc is a G(Ecc(X))-filter. Suppose that A ∈ G(Ecc(X))−αc.
Then zX(A) /∈ α. Since α is a G(zX)-ultrafilter, there is a C ∈ α such
that C ∧ zX(A) = ∅. By Lemma 2.1., A ∧ clEcc(X)(z

−1
X (intX(C))) = ∅

and by (1), clEcc(X)(z
−1
X (intX(C))) ∈ G(Ecc(X)).

Since zX(clEcc(X)(z
−1
X (intX(C)))) = C ∈ α, clEcc(X)(z

−1
X (intX(C))) ∈ αc.

Hence αc is a G(Ecc(X))-ultrafilter. Since α is fixed, there is an x ∈
∩{B | B ∈ α}. Then {A ∩ z−1X (x) | A ∈ αc} has a family of closed
sets in z−1X (x) with the finite intersection property. Since z−1X (x) is a
compact subset of Ecc(X), ∩{A ∩ z−1X (x) | A ∈ αc} 6= ∅ and hence
∩{B | B ∈ αc} 6= ∅. Thus αc is a fixed G(Ecc(X))-ultrafilter.

Let X be a space and ccX = {α | α is a fixed G(zX)-ultrafilter} the
subspace of S(G(zX)).

If G(X) is a base for closed sets in X or G(Ecc(X)) is a base for
closed sets in Ecc(X), then for any fixed G(zX)-ultrafilter α, | ∩{B |
B ∈ αc} |= 1. Indeed, if X is a zero-dimensional space, then G(X) is a
base for closed sets in X. Using this, we have the following :

Proposition 2.8. Let X be a space, G(X) a base for closed sets
in X and Y = {(α, x) | x ∈ ∩α} the subspace of the product space
S(G(zX)) ×X. Then the map t : Y −→ ccX, defined by t((α, x)) = α,
is a homeomorphism.

For any zero-dimensional space X, define a map hX : ccX −→ Ecc(X)

by hX(α) = ∩αc. In the following, let ΣB = Σ
G(zX)
B for all B ∈ G(zX).

We recall that a space X is called a strongly zero-dimensional space
if βX is a zero-dimensional space.

Theorem 2.9. Let X be a strongly zero-dimensional space such that
z−1β (X) is a cloz-space. Then hX : ccX −→ Ecc(X) is a homeomorphism.

Proof. Let α, δ ∈ ccX. Suppose that α 6= δ. Then there are A,B in
G(Ecc(X)) such that zX(A) ∈ α, zX(B) ∈ δ and zX(A) ∧ zX(B) = ∅.
ThenA ∈ αc, B ∈ δc and by Lemma 2.1., zX(A)∧zX(B) = zX(A∧B) = ∅
and A ∧ B = ∅. Since Ecc(X) is a cloz-space, A and B are clopen sets
in Ecc(X) and hence A ∩ B = ∅. Note that hX(α) ∈ A and hX(δ) ∈ B.
Hence hX(α) 6= hX(δ) and so hX is an one-to-one map.

Let y ∈ Ecc(X) and γ = {zX(C) | y ∈ C ∈ G(Ecc(X))}. Clearly,
γ is a G(zX)-filter and ∩{B | B ∈ γ} 6= ∅. Let D ∈ G(Ecc(X)) such
that zX(D) /∈ γ. Then y /∈ D. Since y ∈ D′ = Ecc(X) − D, zX(D′) =
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zX(D)′ ∈ γ and hence γ is a G(zX)-ultrafilter. Hence γ ∈ ccX and
hX(γ) = y. Thus hX is an onto map.

Let F be a closed set in Ecc(X). By Lemma 2.5., Ecc(X) = z−1β (X)
and (γ, x) ∈ Ecc(X)− F . Since X is a strongly zero-dimensional space,
G(Ecc(βX)) is a base for closed sets in Ecc(βX). Hence there is an

A ∈ G(βX) such that γ ∈ Σ
G(βX)
A and (Σ

G(βX)
A × U) ∩ F = ∅ for some

clopen neighborhood U of x in βX. Let V = (Σ
G(βX)
A × U) ∩ Ecc(X).

Since V is a clopen set in Ecc(X), V ∈ G(Ecc(X)) and hence G(Ecc(X))
is a base for closed sets in Ecc(X).

Let E ∈ G(Ecc(X)). Suppsoe that µ ∈ ccX − h−1X (E). Then hX(µ) =
∩µc /∈ E and so E /∈ µc. By the definition of µc, zX(E) /∈ µ and hence
µ /∈ ΣzX(E). Thus ΣzX(E) ⊆ h−1X (E).

Suppose that θ ∈ h−1X (E). Then hX(θ) ∈ E and hence for any A ∈ θc,
A∩E 6= ∅. Since Ecc(X) is a cloz-space, A∧E 6= ∅ for all A ∈ θc. Since
θc is a G(Ecc(X))-ultrafilter, E ∈ θc and so zX(E) ∈ θ. Since θ ∈ ΣzX(E),
ΣzX(E) = h−1X (E).

Since hX is an one-to-one, onto map and G(Ecc(X)) is a base for
closed sets in Ecc(X), hX is a homeomorphism.

Let cX = zX ◦ hX . Then we have the following :

Corollary 2.10. Let X be a strongly zero-dimensional space such
that z−1β (X) is a cloz-space. Then (ccX, cX) is the minimal cloz-cover of
X and cX(α) = ∩α for all α ∈ ccX.

Let X be a strongly zero-dimensional space such that z−1β (X) is a
cloz-space. Since βX is a zero-dimensional space, B(βX) = {B | B
is a clopen set in βX} is a Boolean subalgeba of G(zX). Since G(zX)
and {clβX(A) | A ∈ G(zX)} is Boolean homeomorphic, the map m :
S(G(zX)) −→ S(B(βX)), defined by m(α) = α ∩ B(βX), is a covering
map. Since n : S(B(βX)) −→ βX, defined by n(α) = ∩{A | A ∈ α}, is
a covering. Hence f : S(G(zX)) −→ βX, defined by f(α) = ∩{clβX(A) |
A ∈ α}, is a covering map([8]).

Theorem 2.11. Let X be a strongly zero-dimensional space such that
z−1β (X) is a cloz-space. Then Ecc(X) is a strongly zero-dimensional space
if and only if there is a homeomorphism kX : βEcc(X) −→ S(G(zX)) such
that kX ◦ βEcc(X) = j ◦ h−1X , where j : ccX −→ S(G(zX)) is the dense
embedding.
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Proof. (⇒). By Theorem 2.9., β(ccX) = βEcc(X) and since S(G(zX))
is a compactification of ccX, there is a continuous map kX : βEcc(X) −→
S(G(zX)) such that kX ◦βEcc(X) = j ◦h−1X . Since βEcc(X) and S(G(zX))
are compact spaces and βEcc(X) and j are dense embeddings, kX is a
covering map.

Let p 6= q in βEcc(X). Since βEcc(X) is a zero-dimensional space,
there is a clopen set B in βEcc(X) such that p ∈ B and q /∈ B. Then
B ∩ Ecc(X) ∈ G(Ecc(X)). Note that f ◦ kX ◦ βEcc(X) = βX ◦ zX and
f ◦ kX is a covering map. Then zX(B ∩ Ecc(X)) = f(kX(B)) ∩ βX and
zX(B ∩ Ecc(X)) ∈ G(zX). Hence f(ΣzX(B∩Ecc(X))) = f(kX(B)). Since
f is a covering map and ΣzX(B∩Ecc(X)), kX(B) are regular closed sets in
S(G(zX)), by Lemma 2.1., ΣzX(B∩Ecc(X)) = kX(B). Since kX(p) ∈ kX(B),
kX(p) ∈ ΣzX(B∩Ecc(X)). Similarly, kX(q) ∈ ΣzX(B′∩Ecc(X)). Note that

ΣzX(B∩Ecc(X)) ∩ ΣzX(B′∩Ecc(X))

= ΣzX(B∩Ecc(X))∧zX(B′∩Ecc(X))

= ΣzX((B∩Ecc(X))∧(B′∩Ecc(X)))

= Σ∅ = ∅.
Hence kX(p) 6= kX(q) and so kX is an one-to-one map. Thus kX is a

homeomorphism.
(⇐) Since S(G(zX)) is a zero-dimensional space, βEcc(X) is a zero-

dimensional space.

LetX be a strongly zero-dimensional space. Then βEcc(X) = Ecc(βX)
if and only if Ecc(X) is z#-embedded in Ecc(βX), that is, for any
A ∈ Z(Ecc(X))#, there is aB ∈ Z(Ecc(βX))# such that A = B∩Ecc(X).
Morever, if βEcc(X) = Ecc(βX), then zX : Ecc(X) −→ X is z#-
irreducible, that is, zX(Z(Ecc(X))#) ⊆ Z(X)# ([7]).

For any strongly zero-dimensional space X, S(G(βX)) and βX are
zero-dimensional space and hence Ecc(βX) is a zero-dimensional space.
Using these, we have the following :

Corollary 2.12. Let X be a strongly zero-dimensional space such
that z−1β (X) is a cloz-space. Then Ecc(X) is a strongly zero-dimensional
space and G(zX) = G(X) if and only if βEcc(X) = Ecc(βX).

Proof. (⇒) Since Ecc(X) is a strongly zero-dimensional space, by The-
orem 2. 11., S(G(zX)) = βEcc(X). That is, kX is a homeomorphism.
Since S(G(zX)) is a cloz-spce, there is a covering map g : S(G(zX)) −→
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Ecc(βX) such that zβ ◦ g = f . Suppose that α 6= δ in S(G(zX)).
Then there is an A ∈ G(zX) such that α ∈ ΣA and δ ∈ ΣA′ . Since
clEcc(βX)(z

−1
β (A)) ∈ G(Ecc(βX)), clEcc(βX)(z

−1
β (A)) is a clopen set in

Ecc(βX) and clEcc(βX)(z
−1
β (A′)) = Ecc(βX) − clEcc(βX)(z

−1
β (A)). Since

g(α) ∈ clEcc(βX)(z
−1
β (A)) and g(δ) ∈ clEcc(βX)(z

−1
β (A′)), g(α) 6= g(δ) and

g is a homeomorphism. Thus βEcc(X) = Ecc(βX).
(⇐) Clearly βEcc(X) is a zero-dimensional space. Since βEcc(X) =

Ecc(βX), zX : Ecc(X) −→ X is z#-irreducible. Since G(Ecc(X)) = {A ∈
Z(Ecc(X))# | A′ ∈ Z(Ecc(X))#}, zX(G(Ecc(X))) ⊆ {zX(A) ∈ Z(X)# |
zX(A)′ ∈ Z(X)#}. Hence G(zX) = G(X).
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