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EXISTENCE OF THE SOLUTIONS FOR THE ELLIPTIC

PROBLEM WITH NONLINEAR TERM DECAYING AT

THE ORIGIN

Q-Heung Choi and Tacksun Jung∗

Abstract. We consider the multiplicity of the solutions for the
elliptic boundary value problem with C1 nonlinear term decaying
at the origin. We get a theorem which shows the existence of the
nontrivial solution for the elliptic problem with C1 nonlinear term
decaying at the origin. We obtain this result by reducing the el-
liptic problem with the C1 nonlinear term to the elliptic problem
with bounded nonlinear term and then approaching the variational
method and using the mountain pass geometry for the reduced the
elliptic problem with bounded nonlinear term.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
g : Ω×R→ R be a C1 function. In this paper we consider the following
elliptic problem with Dirichlet boundary condition
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−∆u = g(x, u(x)) in Ω,(1.1)

u = 0 on ∂Ω.

We assume that g satisfies the following:

(g1) g ∈ C1(Ω×R,R),
(g2) g(x, 0) = 0, g(x, ξ) = o(|ξ|) uniformly with respect to x ∈ Ω,
(g3) there exists ξ ≥ 0 such that g(x, ξ) ≤ 0 ∀x ∈ Ω,
(g4) there exist a constant r > 0, a sphere Sr with radius r and an

element e such that e ∈ H\Sr, e < ξ and g(x, e) > 0.

This type boundary value problem was considered by many authors
(cf. [1], [3], [4], [5], [8]). Rabinowitz [8] showed that if g ∈ C1(Ω, R),
g is of the form g(x, t) = λa(x)t + p(x, t), p satisfies p(ξ) = o(|ξ|) as
ξ → 0, a(x) is continuous and a(x) > 0 in Ω, then (1.1) has several
kinds of solutions under some additional assumptions. He proved this
result by the critical point theory and the variational method. Chang
[1] also proved that if g(x, t) = λ(a(x)t+ p(x, t)), then (1.1) has at least
k solutions under the conditions (g1)′ − g(3)′

(g1)′ There exists ξ ≥ 0 such that a(x)ξ + p(ξ) ≤ 0 ∀x ∈ Ω,
(g2)′ p ∈ C1(Ω, R), p satisfies p(ξ) = o(|ξ|) as ξ → 0, a(x) is continuous

on Ω and a(x) > 0,
(g3)′ p(−ξ) = −p(ξ).

He proved this result by the critical point theory. In [6,7] the authors
investigated the existence of multiple solutions of the elliptic boundary
value problems.

The eigenvalue problem

∆u+ λu = 0 in Ω,

u = 0 on ∂Ω

has infinitely many eigenvalues λj, j ≥ 1, which are repeated as often as
its multiplicity, and the corresponding eigenfunctions φj, j ≥ 1, suitably
normalized with respect to L2(Ω) inner product.

Let H be a Sobolev space with a norm

‖u‖2 =

∫
Ω

|∇u|2dx.
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We are looking for the weak solution of (1.1), i.e.,∫
Ω

[∇u · ∇v − g(x, u)v]dx = 0 for all v ∈ H.

We consider the associated functional of (1.1)

(1.2) I(u) =

∫
Ω

[
1

2
|∇u|2 −G(x, u)]dx,

where G(s) =
∫ s

0
g(x, τ)dτ . By (g1), I is well defined.

Our main result is the following.

Theorem 1.1. Assume that g satisfies the conditions (g1) − (g4).
Then (1.1) has at least one nontrivial weak solution.

We prove Theorem 1.1 by reducing the elliptic problem (1.1) to the
elliptic problem with bounded nonlinear term and then approaching the
variational method and using the mountain pass geometry for the re-
duced elliptic problem with bounded nonlinear term. The outline of the
proof of Theorem 1.1 is as follows: In section 2, we prove that functional
I(u) ∈ C1 and the reduced functional Î of I satisfies the Palais Smale
condition by the maximum principle. In section 3, we show that the
reduced functional Î satisfies the mountain pass geometry and so prove
that Î has at least one nontrival critical point, from which we prove
Theorem 1.1.

2. Reduction to the elliptic problem with bounded nonlinear
term

Lemma 2.1. Assume that g satisfies (g1) − (g3). Then I(u) is con-
tinuous and Fréchet differentiable in H with Fréchet derivative

(2.1) ∇I(u)h =

∫
Ω

[∇u · ∇h− (g(x, u))h]dx for all h ∈ H.

If we set

F (u) =

∫
Ω

G(x, u)dx,

then F ′(u) is continuous with respect to weak convergence, F ′(u) is
compact, and

F ′(u)h =

∫
Ω

g(x, u)hdx for all h ∈ H,
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this implies that I ∈ C1(H,R) and F (u) is weakly continuous.

The proof of Proposition 3.1 has the similar process to that of the
proof in Appendix B in [2].

Now we shall reduce the problem (1.1) to the problem with bounded
nonlinear term.

Lemma 2.2. Assume that g satisfies the conditions (g1)− (g4). Let

ĝ(x, t) =

{
g(x, ξ) if t > ξ,
g(x, t) if t ≤ ξ.

Assume that u ∈ H is a solution of the equation{
−∆u(x) = ĝ(x, u(x)) x ∈ Ω,

u|∂Ω = 0.
(2.2)

Then u ≤ ξ, so u is a solution of (1.1).

Proof. By the standard regularity theorem u ∈ W 2
p (Ω) ∀p < +∞, so

u ∈ C1(Ω). Let us set

C = {x ∈ Ω| u(x) > ξ}.
Then we have {

−∆u(x) ≤ 0 ∀x ∈ C,
u|∂C ≤ ξ.

By the maximum principle, we have

u(x) < ξ in C,

so C = ∅. Thus u(x) ≤ ξ.

By Lemma 2.2, it suffices to show the existence of at least one non-
trivial solution of (2.2) to prove the existence of at least one nontrivial
solution of (1.1). Now we shall show that (2.2) has at least one nontrivial
solution by approaching the variational method and applying mountain
pass theorem in the critical point theory. By Lemma 2.1, the associated
functional of (2.2)

Î(u) ∈ C1(H,R).

First we shall show that

(2.3) Î(u) =

∫
Ω

[
1

2
|∇u|2 − Ĝ(x, u)]dx,

where Ĝ(x, s) =
∫ s

0
ĝ(x, τ)dτ , satisfies Palais-Smale condition.



Elliptic problem with nonlinear term decaying at the origin 537

Lemma 2.3. Assume that g satisfies the conditions (g1)− (g3). Then

the functional Î satisfies Palais-Smale condition: Any sequence (um) in

H for which |Î(um)| ≤ M and Î ′(um) → 0 as m → ∞ possesses a
convergent subsequence.

Proof. Any sequence (um) in H such that |Î(um)| ≤M and Î ′(um)→
0 as m → ∞. we shall show that (um) has a convergent subsequence.
It suffices to show that (um) is bounded. We claim that um ≤ ξ. By
contradiction, we suppose that um > ξ. Letting wm = um

‖um‖ , we have

0←− Î ′(um)um
‖um‖2

(2.4)

=

∫
Ω

[−∆wm · wm −
ĝ(x, um)um
‖um‖2

]dx.

Since ‖wm‖ = 1, the sequence (wm) has a convergent subsequence, up
to a subsequence, (wm) which converges weakly to w. Letting m → ∞
in (2.4), we have

(2.5) 0 =

∫
Ω

[[−∆w · w − lim
m→∞

ĝ(x, um)

‖um‖
w]dx.

We note that since ĝ(x, um) is bounded and um > ξ, ĝ(x,um)
‖um‖ is bounded

and limm→∞
ĝ(x,um)
‖um‖ exists. It follows from (2.5) that

−∆w = lim
m→∞

ĝ(x, um)

‖um‖
in H,(2.6)

w = 0 on ∂Ω.

Let us set D = {x ∈ Ω| w > limm→∞
ξ
‖um‖}. We note that if um > ξ,

then

(2.7)
ĝ(x, um)

‖um‖
=
g(x, ξ)

‖um‖
.

Letting m→∞ in (2.6), we have limm→∞
ĝ(x,um)
‖um‖ ≤ 0. It follows from

(2.6) and (2.7) that
−∆w ≤ 0 ∀x ∈ D,

w|∂D ≤ lim
m→∞

ξ

‖um‖
.
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By Maximum principle, we have w ≤ limm→∞
ξ
‖um‖ in D, and hence

D = ∅. That is, w ≤ limm→∞
ξ
‖um‖ , which is impossible because wn >

ξ
‖um‖ . Thus we have um ≤ ξ. Thus the sequence (um) has a convergent

subsequence, up to a subsequence, which converges weakly to u. Thus
we have∫

Ω

[−∆um · um − ĝ(x, um)um]dx = ‖um‖2 −
∫

Ω

ĝ(x, um)umdx

−→
∫

Ω

[−∆u · u− ĝ(x, u)u]dx = ‖u‖2 −
∫

Ω

ĝ(x, u)udx.

Since um is bounded, ĝ(x, um) is bounded and g(1) holds,

lim
m→∞

∫
Ω

ĝ(x, um)umdx =

∫
Ω

ĝ(x, u)udx.

Thus limm→∞ ‖um‖ = ‖u‖, so the sequence (um) converges strongly to

u. Thus Î satisfies the Palais-Smale condition.

3. Proof of Theorem 1.1

We shall show that the functional Î satisfies the mountain pass ge-
ometry. Let

BR = {u ∈ H| ‖u‖ ≤ R}

and

SR = {u ∈ H| ‖u‖ = R}.

Lemma 3.1. Assume that g satisfies the conditions (g1)− (g4). Then

(i) there exist constants ρ, α > 0 such that ρ < r (r is a constant in

(g4)), infu∈Sρ Î(u) ≥ α,

(ii) there is an e ∈ H\Sρ such that Î(e) ≤ 0.

Proof. (i) Let u ∈ H. By (g2) and (g4), there exist a small number
a > 0, ρ > 0 and a sphere Sρ with the radius ρ such that ρ < r, a < 1

2
λ1

and |Ĝ(x, u)| ≤ a‖u‖2 if u ∈ Sρ. If we choose u ∈ Sρ, then there exists
a constant α > 0 such that
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Î(u) =

∫
Ω

[−1

2
∆u · u− Ĝ(x, u(x))]dx

≥ 1

2
λ1‖u‖2

Ω − a‖u‖L
2(Ω) = (

1

2
λ1 − a)‖u‖2 ≥ α.

(ii) Let us choose an element u ∈ H\Sρ such that u ≤ ξ. Since the
operator −∆ is positive operator, −∆u ≤ −∆ξ. Then we have

Î(u) =

∫
Ω

[−∆u · u− Ĝ(x, u)]dx ≤
∫

Ω

[−∆ξ · ξ − Ĝ(x, u)]dx

= −
∫

Ω

Ĝ(x, u)dx.

By (g4), there exist a constant r > 0 and an element e ∈ H\Sρ such
that r > ρ, e < ξ and G(x, e) > 0. Then

Î(e) ≤ −
∫

Ω

Ĝ(x, e) = −
∫

Ω

G(x, e) < 0.

Thus (ii) is proved.

Proof of Theorem 1.1
We will show that Î(u) has a nontrivial critical point by the mountain

pass theorem. By Lemma 2.1, Î(u) is continuous and Fréchet differen-

tiable in H. By Lemma 2.3, the functional Î satisfies (PS) condition.
We note that I(0) = 0. By Lemma 3.1, there exist constants ρ, α > 0

such that ρ < r, infu∈Sρ Î(u) ≥ α, and there is an e ∈ H\Sρ such that

Î(e) < 0. Let us set

Γ = {γ ∈ C([0, 1], H)| γ(0) = 0, γ(1) = e}.

By the mountain pass theorem, Î possesses a critical value c ≥ α char-
acterized as

c = inf
γ∈Γ

max
u∈gamma

I(u).

Thus we prove that Î has at least one nontrivial critical point, so (2.2)
has at least one nontrivial weak solution. By lemma 2.2, this solution
of (2.2) is also a weak solution of (1.1). Thus (1.1) has at least one
nontrivial weak solution, and hence we prove Theorem 1.1.
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