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GENERALIZED CONDITIONAL INTEGRAL

TRANSFORMS, CONDITIONAL CONVOLUTIONS AND

FIRST VARIATIONS

Bong Jin Kim∗ and Byoung Soo Kim

Abstract. We study various relationships that exist among gen-
eralized conditional integral transform, generalized conditional con-
volution and generalized first variation for a class of functionals de-
fined on K[0, T ], the space of complex-valued continuous functions
on [0, T ] which vanish at zero.

1. Definitions and preliminaries

Let C0[0, T ] denote one-parameter Wiener space; that is, the space of
all R-valued continuous functions x(t) on [0, T ] with x(0) = 0. Let M
denote the class of all Wiener measurable subsets of C0[0, T ] and let m
denote Wiener measure. (C0[0, T ],M,m) is a complete measure space
and we denote the Wiener integral of a Wiener integrable functional F
by

(1.1) Ex[F (x)] =

∫
C0[0,T ]

F (x)m(dx).

Throughout this paper our starting point is the generalized Wiener
integral

(1.2) Ex[F (Zh(x, ·))] =
∫
C0[0,T ]

F (Zh(x, ·))m(dx),
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where Zh is the Gaussian process

(1.3) Zh(x, t) =

∫ t

0

h(u)dx(u)

with h(̸= 0) is in L2[0, T ], and
∫ t

0
h(u)dx(u) denotes the Paley-Wiener-

Zygmund stochastic integral. Of course if h(t) ≡ 1 on [0, T ], then
Zh(x, t) = x(t) and so the generalized Wiener integral (1.2) reduces
to the Wiener integral (1.1). We will simply refer to the integral (1.2)
as a Wiener integral.

The Gaussian process Zh has mean zero and covariance function
Ex[Zh(x, s)Zh(x, t)] = a(min{s, t}) where a(t) =

∫ t

0
h2(u)du. In addi-

tion Zh(x, t) is stochastically continuous in t on [0, T ].
Let K = K[0, T ] be the space of all C-valued continuous functions de-

fined on [0, T ] which vanish at t = 0 and let α and β be nonzero complex
numbers. In [2], Cameron and Martin defined a Fourier-Wiener trans-
form of functionals defined on K[0, T ]. In [3], Cameron and Storvick
defined a Fourier-Feynman transform of functionals defined on C0[0, T ].
In a unifying paper [14], Lee defined an integral transform Fα,β of ana-
lytic functionals on an abstract Wiener space. For certain values of the
parameters α and β and for certain classes of functionals, the Fourier-
Wiener transform, the Fourier-Feynman transform and the Gauss trans-
form are special cases of the integral transform Fα,β.

In [21], Yeh studied conditional Wiener integrals of functionals defined
on C0[0, T ]. In [8], Chung and Skoug introduced the concept of a con-
ditional Feynman integral, while in [15], Park and Skoug introduced the
concept of a conditional Fourier-Feynman transform and a conditional
convolution for functionals defined on C0[0, T ].

In this paper we establish various relationships that exist among gen-
eralized conditional integral transform, generalized conditional convolu-
tion and generalized first variation for a class of functionals defined on
K[0, T ].

We finish this section by stating definitions of integral transform Fα,β,
convolution (F ∗ G)α and first variation δF for functionals defined on
K. The main focus of [11] was to establish various relationships holding
among Fα,βF , Fα,βG, (F ∗G)α, δF and δG.

Definition 1.1. Let F be a functional defined on K. Then the
integral transform Fα,βF of F is defined by

(1.4) Fα,βF (y) ≡ Ex[F (αx+ βy)], y ∈ K
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if it exists [5, 11, 13, 15, 19].

Definition 1.2. Let F and G be functionals defined on K. Then
the convolution (F ∗G)α of F and G is defined by

(1.5) (F ∗G)α(y) ≡ Ex

[
F
(y + αx√

2

)
G
(y − αx√

2

)]
, y ∈ K

if it exists [5, 10, 11, 19, 20, 22].

Definition 1.3. Let F be a functional defined on K and let w ∈ K.
Then the first variation δF of F is defined by

(1.6) δF (y|w) ≡ ∂

∂t
F (y + tw)|t=0, y ∈ K

if it exists [1, 4, 11, 18].

2. Generalized conditional integral transforms and general-
ized conditional convolution

Let X : C0[0, T ] → R be a Wiener measurable functional and let
F : C0[0, T ] → C be a Wiener integrable functional. Then for η ∈
R, E[F∥X](η) denotes the conditional Wiener integral of F given X
[6, 8, 16, 21]. In [16], Park and Skoug gave a formula for expressing condi-
tional Wiener integrals in terms of ordinary(i.e., non-conditional) Wiener
integrals; namely that for X(x) = x(T ),

(2.1) Ex[F (x)∥X(x)](η) = Ex[F (x(·)− ·
T
x(T ) +

·
T
η)].

Similarly for the condition Xh(x) = Zh(x, T ), we can get the formula for
expressing conditional Wiener integrals,

Ex[F (Zh(x, ·)∥Xh(x)](η) = Ex[F (Z
{h,a}
T,η (x, ·))],

where Z
{h,a}
T,η (x, ·) = Zh(x, ·)− a(·)

a(T )
Zh(x, T ) +

a(·)
a(T )

η.

In this paper we will always condition by

(2.2) Xh(x) = Zh(x, T ),

where Zh is given by (1.3).

Definition 2.1. For F : K[0, T ] → C we define generalized condi-
tional integral transform, Fα,β(F∥Xh)(y, η) of F givenXh by the formula

(2.3) Fα,β(F∥Xh)(y, η) = Ex[F (αZh(x, ·) + βy)∥Xh(x) = η]
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for y ∈ K and η ∈ R if it exists.

Definition 2.2. For functionals F and G defined on K, we define
generalized conditional convolution, ((F ∗ G)α∥Xh)(y, η), of (F ∗ G)α
given Xh by the formula
(2.4)

((F∗G)α∥Xh)(y, η) = Ex[F
(y + αZh(x, ·)√

2

)
G
(y − αZh(x, ·)√

2

)
||Xh(x) = η]

for y ∈ K and η ∈ R if it exists.

Next we give a definition of generalized first variation δh1,h2F of a
functional F on K.

Definition 2.3. Let F be a functional defined on K and let w ∈ K
and h1, h2 ∈ L2[0, T ]. Then the generalized first variation δh1,h2F of F
is defined by

(2.5) δh1,h2F (y|w) = ∂

∂r
F (Zh1(y, ·) + rZh2(w, ·))|r=0

for y ∈ K if it exists.

Remark 2.4. (i)When h ≡ 1 on [0, T ], the generalized conditional in-
tegral transform and generalized conditional convolution are reduced to
conditional integral transform and conditional convolution, respectively,
which are defined and studied in [12].

(ii) When h1 = h2 ≡ 1 on [0, T ], our definition of the generalized first
variation is reduced to the first variation studied in [1, 4, 11, 12, 18].

(iii) Using the formula for expressing conditional Wiener integral with
conditioning function Xh(x) = Zh(x, T ) in [17], we have

(2.6) Fα,β(F∥Xh)(y, η) = Ex[F (αZ
{h,a}
T,η (x, ·) + βy(·))]

and

((F ∗G)α∥Xh)(y, η)

= Ex

[
F
( 1√

2
(y(·) + αZ

{h,a}
T,η (x, ·))

)
G
( 1√

2
(y(·)− αZ

{h,a}
T,η (x, ·))

)]
(2.7)

where in (2.6) and (2.7) the existence of either side implies the other
side and their equality.
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Under rather mild conditions on F and G, our first theorem shows
that the generalized conditional integral transform of the generalized
conditional convolution is the product of generalized conditional integral
transforms.

Theorem 2.5. Let α and β be nonzero complex numbers. Assume
that for F : K → C and G : K → C, Fα,β(((F ∗ G)α∥Xh)(·, η1)∥Xh),
Fα,β(F∥Xh) and Fα,β(G∥Xh) all exist for a.e.η1 ∈ R. Then

Fα,β(((F ∗G)α∥Xh)(·, η1)∥Xh)(y, η2)

= Fα,β(F∥Xh)
( y√

2
,
η2 + η1√

2

)
Fα,β(G∥Xh)

( y√
2
,
η2 − η1√

2

)(2.8)

for all y ∈ K and a.e.η2 ∈ R.

Proof. From equations (2.3) through (2.7) we have the following;

R ≡Fα,β(((F ∗G)α∥Xh)(·, η1)∥Xh)(y, η2)

=Ex[Ew[F (
βy(·)√

2
+

α√
2
Z

{h,a}
T,η2+η1

(x+ w, ·))

·G(
βy(·)√

2
+

α√
2
Z

{h,a}
T,η2−η1

(x− w, ·))]].

Since Zh(x+w, ·)− a(·)
a(T )

Zh(x+w, T ) and Zh(x−w, ·)− a(·)
a(T )

Zh(x−w, T )

are independent processes as can be seen by checking their covariance
function, we can see that

R =Ex[Ew[F (
βy(·)√

2
+

α√
2
Z

{h,a}
T,η2+η1

(x+ w, ·))]]

· Ex[Ew[G(
βy(·)√

2
+

α√
2
Z

{h,a}
T,η2−η1

(x− w, ·))]].

Also the processes Zh(x+w,·)√
2

and Zh(x−w,·)√
2

are each equivalent to the pro-

cess Zh(x, ·), and the equation (2.6) give us the following result;

R =Ex[F (
βy(·)√

2
+ αZ

{h,a}
T,

η2+η1√
2

(x, ·))]Ex[G(
βy(·)√

2
+ αZ

{h,a}
T,

η2−η1√
2

(x, ·))]

=Fα,β(F∥Xh)(
y√
2
,
η2 + η1√

2
)Fα,β(G∥Xh)(

y√
2
,
η2 − η1√

2
)

which completes the proof.
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Next we describe the class of functionals that we work with in this pa-
per. Let {θ1, θ2, . . .} be a complete orthonormal set of R-valued functions
in L2[0, T ]. Furthermore assume that each θj is of bounded variation on
[0, T ]. Then for each y ∈ K and j ∈ {1, 2, . . .}, the Riemann-Stieltjes

integral ⟨θj, y⟩ ≡
∫ T

0
θj(t) dy(t) exists. Furthermore

(2.9) |⟨θj, y⟩| = |θj(T )y(T )−
∫ T

0

y(t) dθj(t)| ≤ Mj∥y∥∞

with

(2.10) Mj = |θj(T )|+Var(θj, [0, T ]).

For 0 ≤ σ < 1, let Eσ be the space of all functionals F : K → C of
the form

(2.11) F (y) = f(⟨θ1, y⟩, . . . , ⟨θn, y⟩) = f(⟨θ⃗, y⟩)

for some positive integer n, where f(λ1, . . . , λn) = f(λ⃗) is an entire
function of n complex variables λ1, . . . , λn of exponential type; that is
to say

(2.12) |f(λ⃗)| ≤ AF exp{BF

n∑
j=1

|λj|1+σ}

for some positive constants AF and BF .
In [12], the current authors and Skoug showed that for all F and G in

Eσ, Fα,β(F∥X) and ((F ∗G)α∥X) exist and belong to Eσ for all nonzero
complex numbers α and β and the condition by X(x) = x(T ) while
δF (y|w) exists and belongs to Eσ for all y and w in K.

For F of the form (2.11), as we will see below in Theorem 2.7, when
we evaluate the generalized conditional integral transform of F givenXh,

we encounter the Riemann-Stieltjes integrals ⟨θj(·), Z{h,a}
T,η (x, ·)⟩. Letting

(2.13) bj =
1

a(T )

∫ T

0

θj(t) da(t),

we see that

(2.14) ⟨θj(·), Z{h,a}
T,η (x, ·)⟩ = ⟨θj(·)− bj, Zh(x, ·)⟩+ ηbj

for x ∈ C0[0, T ].
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Take a n× n matrix C = (cj,k) and an orthonormal set {ϕ1, . . . , ϕn}
on [0, T ] satisfying

(2.15) θ⃗ − b⃗ = ϕ⃗C.

For details on the matrix C and the orthonormal set {ϕ1, . . . , ϕn}, see
Section 2 of [12].

The following lemma [7], which follows quite easily from the defini-
tion of the Paley-Wiener-Zygmund stochastic integral, (2.14) and (2.15),
plays a key role in the proof of Theorem 2.7. In view of the follow-
ing lemma, throughout this paper we require h to be in L∞[0, T ] with
{ϕ1h, . . . , ϕnh} be an orthogonal set in L2[0, T ] rather than simply in
L2[0, T ].

Lemma 2.6. For each ϕ ∈ L2[0, T ] and each h ∈ L∞[0, T ],

(2.16)

∫ T

0

ϕ(t)dZh(x, t) =

∫ T

0

ϕ(t)h(t)dx(t)

for s-a.e. x ∈ C0[0, T ], that is, ⟨ϕ, Zh(x, ·)⟩ = ⟨ϕh, x⟩.

Theorem 2.7. Let F ∈ Eσ be given by (2.11), h ∈ L∞[0, T ] with
∥ϕjh∥22 > 0 for j = 1, 2, · · ·n, and let Xh be given by (2.2). Then
the generalized conditional integral transform Fα,β(F∥Xh)(y, η) exists,
belongs to Eσ and is given by the formula

(2.17) Fα,β(F∥Xh)(y, η) = Kh(η; ⟨θ⃗, y⟩)

for all y ∈ K and a.e.η ∈ R, where

Kh(η; λ⃗)

= ((2π)n
n∏

j=1

∥ϕjh∥22)−
1
2

∫
Rn

f(αu⃗C + αη⃗b+ βλ⃗) exp
{
−1

2

n∑
j=1

u2
j

∥ ϕjh∥22

}
du⃗.

(2.18)

Proof. For each y ∈ K and a.e.η ∈ R,

Fα,β(F∥Xh)(y, η) = Ex[f(α⟨θ⃗, Z{h,a}
T,η (x, ·)⟩+ β⟨θ⃗, y⟩)].

Using (2.14) and (2.15), we have

Fα,β(F∥Xh)(y, η) =Ex[f(α⟨θ⃗ − b⃗, Zh(x, ·)⟩+ αη⃗b+ β⟨θ⃗, y⟩)]

=Ex[f(α⟨ϕ⃗, Zh(x, ·)⟩C + αη⃗b+ β⟨θ⃗, y⟩)].
(2.19)
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By Lemma 2.6 and a well-known Wiener integration theorem, we see

that the last expression is equal to Kh(η; ⟨θ⃗, y⟩), where Kh(η; ·) is given
by (2.18). By [9, Theorem 3.15] Kh(η; λ⃗) is an entire function. Moreover
by the inequality (2.12) we have

|Kh(η; λ⃗)|

≤((2π)n
n∏

j=1

∥ϕjh∥22)−1/2AF exp
{
BF (3|β|)1+σ

n∑
j=1

|λj|1+σ
}

·
∫
Rn

exp
{
BF (3|α|)1+σ

n∑
j=1

(
|(u⃗C)j|1+σ + |ηbj|1+σ

)
− 1

2

n∑
j=1

u2
j

∥ϕjh∥22

}
du⃗

=AFα,β;hF exp
{
BFα,β;hF

n∑
j=1

|λj|1+σ
}
,

where BFα,β;hF = BF (3|β|)1+σ, and

AFα,β;hF =AF ((2π)
n

n∏
j=1

∥ϕjh∥22)−1/2

∫
Rn

exp
{
BF (3|α|)1+σ

n∑
j=1

(
|(u⃗C)j|1+σ + |ηbj|1+σ

)
− 1

2

n∑
j=1

u2
j

∥ϕjh∥22

}
du⃗ < ∞.

Hence Fα,β(F∥Xh)(y, η) ∈ Eσ as a function of y.

Remark 2.8. For any F ∈ Eσ and G ∈ Eσ we can always express F
by equation (2.11) and G by

(2.20) G(y) = g(⟨θ1, y⟩, · · · , ⟨θn, y⟩)

using the same positive integer n.

In our next theorem we show that the generalized conditional convo-
lution of functionals from Eσ is an element of Eσ.

Theorem 2.9. Let F,G ∈ Eσ be given by (2.11) and (2.20) with
corresponding entire functions f and g, respectively. And let Xh be
given by (2.2) with h ∈ L∞[0, T ] and ∥ϕjh∥22 > 0 for j = 1, · · · , n. Then
the generalized conditional convolution ((F ∗G)α∥Xh)(y, η) exists for all
y ∈ K and a.e.η ∈ R, belongs to Eσ, and is given by the formula

(2.21) ((F ∗G)α∥Xh)(y, η) = Lh(η; ⟨θ⃗, y⟩)
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where

Lh(η; λ⃗)

= ((2π)n
n∏

j=1

∥ϕjh∥22)−1/2

∫
Rn

f
( λ⃗+ αu⃗C + αη⃗b√

2

)
g
( λ⃗− αu⃗C − αη⃗b√

2

)
exp

{
−1

2

n∑
j=1

u2
j

∥ϕjh∥22

}
du⃗.

(2.22)

Proof. For each y ∈ K and a.e.η ∈ R,

L ≡((F ∗G)α∥Xh)(y, η)

=Ex

[
f
( 1√

2
(⟨θ⃗, y⟩+ α⟨θ⃗, Zh(x, ·)−

a(·)
a(T )

Zh(x, T ) +
a(·)
a(T )

η⟩)
)

g
( 1√

2
(⟨θ⃗, y⟩ − α⟨θ⃗, Zh(x, ·)−

a(·)
a(T )

Zh(x, T ) +
a(·)
a(T )

η⟩)
)]

.

By (2.14), (2.15) and a well-known Wiener integration theorem, we see

that the last expression is equal to Lh(η; ⟨θ⃗, y⟩) where Lh(η; λ⃗) is given

by (2.22). By [9, Theorem 3.15], Lh(η; λ⃗) is an entire function and

|Lh(η; λ⃗)|

≤ ((2π)n
n∏

j=1

∥ϕjh∥22)−
1
2AFAG exp

{
(BF +BG)

( 3√
2

)1+σ
n∑

j=1

|λj|1+σ
}

·
∫
Rn

exp
{
(BF +BG)

(3|α|√
2

)1+σ
n∑

j=1

(
|(u⃗C)j|1+σ + |ηbj|1+σ − 1

2

u2
j

∥ϕjh∥22

)}
du⃗

= A(F∗G)α;h exp
{
B(F∗G)α;h

n∑
j=1

|λj|1+σ
}
,

where

B(F∗G)α;h = (BF +BG)
( 3√

2

)1+σ
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and

A(F∗G)α;h =AFAG

(
(2π)n

n∏
j=1

∥ϕjh∥22
)− 1

2

∫
Rn

exp
{
(BF +BG)

(3|α|√
2

)1+σ

n∑
j=1

(
|(u⃗C)j|1+σ + |ηbj|1+σ

)
− 1

2

n∑
j=1

u2
j

∥ϕjh∥22

}
du⃗ < ∞.

Hence ((F ∗G)α∥Xh)(y, η) ∈ Eσ as a function of y.

Remark 2.10. Unlike the convolution product, the generalized condi-
tional convolution product is not commutative because ((F∗G)α∥Xh)(y, η) =
((G ∗ F )α∥Xh)(y,−η). However the usual additive distribution proper-
ties hold for the generalized conditional convolution product.

As in [12, Theorem 2.6], we can show that the generalized first vari-
ation δh1,h2F (y|w) of functionals F in Eσ is an element of Eσ, both as a
function of y for fixed w and as a function of w for fixed y.

Theorem 2.11. Let F ∈ Eσ be given by (2.11) and let h1 and h2 be
in L∞[0, T ]. Then for all y and w in K,

δh1,h2F (y|w) =
n∑

j=1

⟨θj, Zh2(w, ·)⟩fj(⟨θ⃗, Zh1(y, ·)⟩)

=
n∑

j=1

⟨θj, Zh2(w, ·)⟩Fj(Zh1(y, ·))
(2.23)

where fj(λ⃗) = ∂
∂λj

f(λ1, . . . , λn) and Fj(·) = fj(⟨θ⃗, ·⟩). In addition, as

a function of y, δh1,h2F (y|w) is an element of Eσ with Bδh1,h2F (·|w) =

21+σBF and with

Aδh1,h2F (·|w) = AF exp{21+σBF}(∥w∥∞
n∑

j=1

Nj)

where |⟨θjh2, w⟩| ≤ Nj∥w∥∞, and Nj = |θj(T )h2(T )|+ V ar(θjh2, [0, T ]).
Furthermore, as a function of w, δh1,h2F (y|w) is an element of Eσ with
Bδh1,h2F (y|·) = 1 and with

Aδh1,h2F (y|·) = ne−
1
2AF exp

{
21+σBF

(
1 +

n∑
j=1

(∥h1∥∞∥y∥∞Mj)
1+σ

)}
.
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Remark 2.12. Note that in view of theorems 2.7, 2.9, and 2.11 above,
all of the functionals that arise in Section 3 below are automatically
elements of Eσ.

3. Various relationships involving the concepts

In this section we establish the various relationships involving the
three concepts of generalized conditional integral transform, generalized
conditional convolution and generalized first variation for functionals
belonging to Eσ. These various relationships, as well as alternative ex-
pressions for some of them, are given by formula (2.8) above, formulas
(3.4) through (3.6), (3.8) and (3.10) through (3.12) below. It is inter-
esting to note that the left hand side of each of these formulas involve
exactly two of the three concepts, while each right hand side involves at
most one of these concepts.

The following lemma plays a key role in establishing several formulas
throughout this section.

Lemma 3.1. For all j ∈ {1, 2, . . . , n} and h ∈ L∞[0, T ] with ∥ϕjh∥22 >
0,

(3.1) Ex[⟨θj − bj, Zh(x, ·)⟩] = 0,

while for all j and l in {1, 2, . . . , n},
(3.2) Ex[⟨θj − bj, Zh(x, ·)⟩⟨θl − bl, Zh(x, ·)⟩] = Dj,l;h

where

(3.3) Dj,l;h =
n∑

k=1

ck,jck,l∥ϕkh∥22.

Proof. By equation (2.15), θj−bj =
n∑

k=1

ck,jϕk for all j ∈ {1, 2, . . . , n},

and hence

Ex[⟨θj − bj, Zh(x, ·)⟩] =
n∑

k=1

ck,jEx[⟨ϕk, Zh(x, ·)⟩].

But by Lemma 2.6,

Ex[⟨ϕk, Zh(x, ·)⟩] = (2π∥ϕkh∥22)−1/2

∫
R
u exp

{
−1

2

u2

∥ϕkh∥22

}
du = 0
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and so we obtain (3.1).
Similarly for all j and l in {1, 2, · · · , n},

Ex[⟨θj − bj, Zh(x, ·)⟩⟨θl − bl, Zh(x, ·)⟩]

=
n∑

k=1

n∑
m=1

ck,jcm,lEx[⟨ϕk, Zh(x, ·)⟩⟨ϕm, Zh(x, ·)⟩]

=
n∑

k=1

ck,jck,l∥ϕkh∥22 = Dj,l;h

as desired, because for k ̸= m,

Ex[⟨ϕk, Zh(x, ·)⟩⟨ϕm, Zh(x, ·)⟩] = Ex[⟨ϕkh, x⟩⟨ϕmh, x⟩] = 0

and this completes the proof.

Our first formula (2.8) is useful because it allows us to calculate
Fα,β(((F ∗ G)α∥Xh)(·, η1)∥Xh)(y, η2) without ever actually calculating
(F ∗G)α or ((F ∗G)α∥Xh).

Theorem 3.2. Let F and G be as in Theorem 2.9. Then equation
(2.8) holds for all y ∈ K and a.e.η1, η2 ∈ R.

Proof. The left hand side of (2.8) exists by Theorem 2.9 and Theorem
2.7, while the right hand side of equation (2.8) exists by Theorem 2.7.
The equality in equation (2.8) then follows from Theorem 2.5.

Our next formula (3.4), giving the conditional convolution of condi-
tional integral transforms, follows from Theorem 2.7, Theorem 2.9 and
a well-known Wiener integration formula.

Theorem 3.3. Let F and G be as in Theorem 2.9. Then for all
y ∈ K and a.e.η1, η2, η3 ∈ R,

((Fα,β(F∥Xh)(·, η1) ∗ Fα,β(G∥Xh)(·, η2))α∥Xh)(y, η3)

= [(2π)n
n∏

j=1

∥ϕjh∥22]−
3
2

∫
R3n

f(αv⃗C + αη1⃗b+
β√
2
(⟨θ⃗, y⟩+ αu⃗C + αη3⃗b))

g(αw⃗C + αη2⃗b+
β√
2
(⟨θ⃗, y⟩ − αu⃗C − αη3⃗b))

exp{−1

2

n∑
j=1

1

∥ϕjh∥22
(u2

j + v2j + w2
j )} du⃗ dv⃗ dw⃗.

(3.4)
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In our next theorem we obtain a formula for the generalized first
variation of the conditional convolution of functionals from Eσ.

Theorem 3.4. Let F ∈ Eσ be given by (2.11) and let h, h1 and h2

be in L∞[0, T ]. Then for a.e.η ∈ R,
δh1,h2((F ∗G)α∥Xh)(·, η)(y|w)

=
n∑

j=1

⟨θj, Zh2(w, ·)⟩√
2

[
((Fj ∗G)α∥Xh)(Zh1(y, ·), η)

+ ((F ∗Gj)α∥Xh)(Zh1(y, ·), η)
](3.5)

for all y and w in K.

Proof. By the definition of the generalized first variation and (2.21)
it follows that
A ≡ δh1,h2((F ∗G)α∥Xh)(·, η)(y|w)

=
∂

∂r
((F ∗G)α∥Xh)(Zh1(y, ·) + rZh2(w, ·), η)|r=0

=
∂

∂r
Ex[f(

1√
2
(⟨θ⃗, Zh1(y, ·) + rZh2(w, ·)⟩+ α⟨ϕ⃗, Zh(x, ·)⟩C + αη⃗b))

g(
1√
2
[⟨θ⃗, Zh1(y, ·) + rZh2(w, ·)⟩ − α⟨ϕ⃗, Zh(x, ·)⟩C − αη⃗b))]|r=0.

Evaluating partial derivative in the last expression we obtain that

A =
n∑

j=1

⟨θj, Zh2(w, ·)⟩√
2

Ex[fj(
1√
2
(⟨θ⃗, Zh1(y, ·)⟩+ α⟨ϕ⃗, Zh(x, ·)⟩C + αη⃗b))

g(
1√
2
[⟨θ⃗, Zh1(y, ·)⟩ − α⟨ϕ⃗, Zh(x, ·)⟩C − αη⃗b))

+ f(
1√
2
(⟨θ⃗, Zh1(y, ·)⟩+ α⟨ϕ⃗, Zh(x, ·)⟩C + αη⃗b))

gj(
1√
2
[⟨θ⃗, Zh1(y, ·)⟩ − α⟨ϕ⃗, Zh(x, ·)⟩C − αη⃗b))].

Using (2.21) once more we know that the last expression is equal to the
last hand side of (3.5) and this completes the proof.

In Theorem 3.5 below we obtain a formula for the generalized condi-
tional convolution with respect to the first argument of the variation of
the first variation of functionals from Eσ.
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Theorem 3.5. Let F and G be as in Theorem 2.9 and let h, h1 and
h2 be in L∞[0, T ]. Then

((δh1,h2F (·|w) ∗ δh1,h2G(·|w))α∥Xh)(y, η)

=
n∑

j=1

n∑
l=1

⟨θj, Zh2(w, ·)⟩⟨θl, Zh2(w, ·)⟩((Fj ∗Gl)α∥Xh)(Zh1(y, ·), η)

(3.6)

for all y, w ∈ K and a.e.η ∈ R.

Proof. Applying the additive distribution properties of the conditional
convolution to the expressions given by (2.23) and the corresponding
expression for G,

(3.7) δh1,h2G(y|w) =
n∑

l=1

⟨θl, Zh2(w, ·)⟩Gl(Zh1(y, ·))

yields equation (3.6) as desired.

We restrict our attention, in this subsequent, to the functions h1 and
h2 either of them is constant on [0, T ] rather than to be in L∞[0, T ].

In Theorem 3.6 below we obtain a formula for the generalized condi-
tional convolution product with respect to the second argument of the
variation of the first variation of functionals from Eσ.

Theorem 3.6. Let F and G be as in Theorem 2.9 and let h, and h1

be in L∞[0, T ] and h2 be a constant function. Then for a.e.η ∈ R,

((δh1,h2F (y|·) ∗ δh1,h2G(y|·))α∥Xh)(w, η) =
1

2
δh1,h2F (y|w)δh1,h2G(y|w)

+
αh2η

2

n∑
j=1

[
δh1,h2G(y|w)bjFj(Zh1(y, ·))− δh1,h2F (y|w)bjGj(Zh1(y, ·))

]
− α2h2

2

2

n∑
j=1

n∑
l=1

(η2bjbl +Dj,l:h)Fj(Zh1(y, ·))Gl(Zh1(y, ·))

(3.8)

for all y and w in K with Dj,l:h given by equation (3.3).
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Proof. Using the definition of the conditional convolution product,
together with equations (2.23) and (3.7), we obtain that

((δh1,h2F (y|·) ∗ δh1,h2G(y|·))α∥Xh)(w, η)

=
1

2

n∑
j=1

n∑
l=1

Fj(Zh1(y, ·))Gl(Zh1(y, ·))Ex[{⟨θjh2, w⟩+ αh2⟨θj − bj, Zh(x, ·)⟩

+ αh2ηbj}{⟨θlh2, w⟩ − αh2⟨θl − bl, Zh(x, ·)⟩ − αh2ηbl}].

Hence using Lemma 3.1 we see that

((δh1,h2F (y|·) ∗ δh1,h2G(y|·))α∥Xh)(w, η)

=
1

2

n∑
j=1

n∑
l=1

Fj(Zh1(y, ·))Gl(Zh1(y, ·)){⟨θjh2, w⟩⟨θlh2, w⟩

+ αh2η(bj⟨θlh2, w⟩ − bl⟨θjh2, w⟩)− α2h2
2η

2bjbl − α2h2
2Dj,l:h}.

(3.9)

Finally, using equations (2.23) and (3.7) again, it follows that the right
hand side of (3.9) equals the right hand side of (3.8) as desired.

In Theorem 3.7 below we get a formula for the generalized conditional
integral transform with respect to the first argument of the variation
while in Theorem 3.8 we get a formula for the generalized conditional
integral transform with respect to the second argument of the variation.

Theorem 3.7. Let F ∈ Eσ be given by (2.11) and let h be in L2[0, T ],
h2 be in L∞[0, T ] and h1 be a constant function. Then for a.e.η ∈ R,
(3.10)

Fα,β(δh1,h2F (·|w)∥Xh)(y, η) =
n∑

j=1

⟨θj, Zh2(w, ·)⟩Fαh1,βh1(Fj∥Xh)(y, η)

and
(3.11)

δh1,h2Fα,β(F∥Xh)(·, η)(y|w) = β
n∑

j=1

⟨θj, Zh2(w, ·)⟩Fα,βh1(Fj∥Xh)(y, η)

for all y and w in K.
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Proof. Using the definition of conditional integral transform, equa-
tions (2.23) and (3.1), it follows that

Fα,β(δh1,h2F (·|w)∥Xh)(y, η)

= Ex[
n∑

j=1

⟨θj, Zh2(w, ·)⟩fj(α⟨h1θ⃗, Z
{h,a}
T,η (x, ·)⟩+ β⟨h1θ⃗, y⟩)]

=
n∑

j=1

⟨θj, Zh2(w, ·)⟩Ex[fj(⟨θ⃗, αh1Z
{h,a}
T,η (x, ·) + βh1y⟩)].

Furthermore, using the definition of generalized first variation and
equation (2.19) we obtain that

δh1,h2Fα,β(F∥Xh)(·, η)(y|w)

= β
n∑

j=1

⟨θj, Zh2(w, ·)⟩Ex[fj(α⟨ϕ⃗, Zh(x, ·)⟩C + αη⃗b+ βh1⟨θ⃗, y⟩)]

= β
n∑

j=1

⟨θj, Zh2(w, ·)⟩Fα,βh1(Fj∥Xh)(y, η)

as we wished.

Theorem 3.8. Let F ∈ Eσ be given by (2.11) and let h, h1 be in
L∞[0, T ] and h2 be a constant function. Then for a.e.η ∈ R,
(3.12)

Fα,β(δh1,h2F (y|·)∥Xh)(w, η) = βδh1,h2F (y|w) + αηh2

n∑
j=1

bjFj(Zh1(y, ·))

for all y and w in K.

Proof. Using the definition of the generalized conditional integral trans-
form, equation (2.23), equation (3.1) and then equation (2.23) again, it
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follows that

Fα,β(δh1,h2F (y|·)∥Xh)(w, η)

= Ex[
n∑

j=1

⟨θjh2, αZ
{h,a}
T,η (x, ·) + βw⟩fj(⟨θ⃗, Zh1(y, ·)⟩)]

=
n∑

j=1

fj(⟨θ⃗, Zh1(y, ·)⟩)h2Ex[β⟨θj, w⟩+ α⟨θj − bj, Zh(x, ·)⟩+ αηbj]

= β

n∑
j=1

⟨θj, Zh2(w, ·)⟩fj(⟨θ⃗, Zh1(y, ·)⟩) + αηh2

n∑
j=1

bjfj(⟨θ⃗, Zh1(y, ·)⟩)

as we wished.
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