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ON THE STABILITY OF THE QUADRATIC-ADDITIVE
TYPE FUNCTIONAL EQUATION IN RANDOM
NORMED SPACES VIA FIXED POINT METHOD

SUN SOOK JIN AND YANG-HI1I LEE*

ABSTRACT. In this paper, we prove the stability in random normed
spaces via fixed point method for the functional equation

2f(x +y) + fx—y) + fly —x) — f(2z) — f(2y) = 0.

1. Introduction

In 1940, S. M. Ulam [23] raised a question concerning the stability
of homomorphisms: Given a group G, a metric group G, with the
metric d(-,-), and a positive number ¢, does there exist a § > 0 such
that if a mapping f : G1 — G> satisfies the inequality

d(f(zy), f(x)f(y)) <4

for all x,y € G then there exists a homomorphism F' : G; — G5 with

d(f(z), F(z)) <e

for all x € G1?7 As mentioned above, when this problem has a solution,
we say that the homomorphisms from G to G5 are stable. In 1941,
D. H. Hyers [5] gave a partial solution of Ulam’s problem for the case
of approximate additive mappings under the assumption that G; and
(G2 are Banach spaces. Hyers’ result was generalized by T. Aoki [1]
for additive mappings and Th. M. Rassias [19] for linear mappings
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by considering the stability problem with unbounded Cauchy differ-
ences. The paper of Th. M. Rassias has provided a lot of influence in
the development of stability problems. The terminology Hyers-Ulam-
Rassias stability originated from these historical background. During
the last decades, the stability problems of functional equations have
been extensively investigated by a number of mathematicians, see [2]-
[4], [6]-[15].

Recall, almost all subsequent proofs in this very active area have
used Hyers’ method, called a direct method. Namely, the function
F', which is the solution of a functional equation, is explicitly con-
structed, starting from the given function f, by the formulae F(z) =
limy, 00 5= f(2") or F(z) = lim,_,0 2" f(Z). In 2003, V. Radu [18]
observed that the existence of the solution F' of a functional equation
and the estimation of the difference with the given function f can be
obtained from the fixed point alternative. In 2008, D. Mihet and V.
Radu [17] applied this method to prove the stability theorems of the
Cauchy functional equation:

(1.1) flz+y) = flx) = fly) =0

in random normed spaces. We call solutions of (1.1) by additive map-
pings.

In this paper, using the fixed point method, we will prove the sta-
bility for the quadratic-additive type functional equation:

(1.2) 2f(x+y)+ flx—y)+ fly —x) — f(2x) — f(2y) =0

in random normed spaces. It is easy to see that the mappings f(x) =
az? + bx is a solution of the functional equation (1.2). The solution
of the quadratic-additive type functional equation (1.2) is said to be a
quadratic-additive mapping.

2. Preliminaries

In this section, we state the usual terminology, notations and con-
ventions of the theory of random normed spaces, as in [21,22]. Firstly,
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the space of all probability distribution functions is denoted by

AT :={F :RU{—00,00} — [0,1]|F is left-continuous
and nondecreasing on R, where F(0) = 0 and F'(+o0) = 1}.

And let the subset D C AT be the set DV := {F € A"|l” F(400) =
1}, where I~ f(x) denotes the left limit of the function f at the point
x. The space AT is partially ordered by the usual pointwise ordering
of functions, that is, I’ < G if and only if F(t) < G(t) for all t € R.
The maximal element for AT in this order is the distribution function
g0 : RU{0} — [0,00) given by

" 0, ift<o0,
E =
0 1, ift>0.

DEFINITION 2.1. ([21]) A mapping 7 : [0,1] X [0,1] — [0, 1] is called
a continuous triangular norm (briefly, a continuous t-norm) if T satis-
fies the following conditions:

(a) 7 is commutative and associative;

(b) 7 is continuous;

(c) 7(a,1) = a for all a € [0, 1];

(d) 7(a,b) < 7(c,d) whenever a < cand b < d for all a,b,c,d € [0,1].

Typical examples of continuous ¢-norms are 7p(a, b) = ab, Tps(a,b) =
min(a, b) and 71 (a,b) = max(a + b — 1,0).

DEFINITION 2.2. ([22]) A random normed space (briefly, RN-space)
is a triple (X, A, 7), where X is a vector space, T is a continuous t-norm,
and A is a mapping from X into DT such that the following conditions
hold:

(RN1) A, (t) = €o(t) for all t > 0 if and only if z = 0,

(RN2) Apy(t) = Ap(t/|e|) for all z in X, o # 0 and all t > 0,

(RN3) Agyy(t+s) > 7(Az(t),Ay(s)) forall z,y € X and all ¢, s > 0.

If (X, ||-|]) is a normed space, we can define a mapping A : X — DT
by
Aalt) =
: t+

for all z € X and t > 0. Then (X, A, 7)) is a random normed space,
which is called the induced random normed space.
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DEFINITION 2.3. Let (X, A, 7) be an RN-space.

(i) A sequence {z,} in X is said to be convergent to a point x € X

if, for every t > 0 and € > 0, there exists a positive integer N such

that A, _.(t) > 1 —¢e whenever n > N.

(ii) A sequence {z,} in X is called a Cauchy sequence if, for ev-

ery t > 0 and € > 0, there exists a positive integer N such that

Ay, —, (t) > 1 —¢c whenever n > m > N.

(iii) An RN-space (X, A, 7) is said to be complete if and only if every
Cauchy sequence in X is convergent to a point in X.

THEOREM 2.4. ([21)) If (X,A,7) is an RN-space and {x,} is a
sequence such that x,, — x, then lim,,_, o A, (1) = A, ().

3. Main results
We recall the fundamental result in the fixed point theory.

THEOREM 3.1. ([16] or [20]) Suppose that a complete generalized
metric space (X, d), which means that the metric d may assume infi-
nite values, and a strictly contractive mapping J : X — X with the
Lipschitz constant 0 < L < 1 are given. Then, for each given element
x € X, either

d(J"z, J" T x) = +o0, Vn € NU {0},

or there exists a nonnegative integer k such that:
(1) d(J"z,J" tx) < +oo for all n > k;
(2) the sequence {J"x} is convergent to a fixed point y* of J;
(3) y* is the unique fixed point of J in Y = {y € X,d(J*z,y) <
+o0};
(4) dy,y*) < (1/(1 = L))d(y, Jy) for ally € Y.

Let X and Y be vector spaces. We use the following abbreviation
for a given mapping f: X — Y

Df(z,y) :=2f(x+y)+ flx —y) + fly —x) — f(2x) — f(2y)

for all x,y € X. Now we will establish the stability for the functional
equation (1.2) in random normed spaces via fixed point method.
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THEOREM 3.2. Let X be a linear space, (Z,A’, 7p;) be an RN-space,
(Y, A, ) be a complete RN-space and f : X — Y be a mapping with
f(0) = 0 for which there is ¢ : X? — Z such that

(3.1) ADj(ay) () = A ()

for all z,y € X andt > 0. If for all z,y € X and t > 0  satisfies one

of the following conditions:

(i) Aiw(x’y)(t) < A:p(Qz,Qy) (t) for some 0 < a < 2,

(i) AL (24 04 (8) < Afy ) (1) for some 4 < o

then there exists a unique quadratic-additive mapping F' : X — Y
such that

M(x,(2 — a)t) if  satisfies (i),

3.2 Aoy pie (£) >
(3:2) f@-r (1) { M(x,(a—4)t) if ¢ satisfies (ii)
for all x € X and t > 0, where

M(x, t) = TM{A:,O(I,O) (t), AZ@(*(B,O) (t)}
Moreover if « < 1 and Afp(w v) is continuous in x,y under the condition
(i), then f is a quadratic-additive mapping.

Proof. We will prove the theorem in two cases, ¢ satisfies the con-
dition (i) or (ii).

Case 1. Assume that ¢ satisfies the condition (i). Let S be the set
of all functions g : X — Y with ¢g(0) = 0 and introduce a generalized
metric on S by

d(g,h) :=inf {u € RT : Ayz)_p(z)(ut) > M(z,t) forall z€ X}.
Consider the mapping J : § — S defined by

f2x) = f(=22) | fQ2) + f(=22)
4 8

Jf(x) =
then we have

(47" (f(2"x) + f(=2"2)) + 27" (f(2"x) — f(—2"x)))

DN | =

JUf(x) =



24 Sun Sook Jin and Yang-Hi Lee

forallz € X andn € N. Let f,g € S and let u € [0, 00| be an arbitrary
constant with d(g, f) < u. From the definition of d, (RN2), and (RN3),
for the given 0 < a < 2 we have

au

au
Ajg(e)—Tf(2) (715) :A3(9(2m)8—f(2x))_g(—2x);f(—2w) (775)

3aut aut
>Tar § Nsee)—f20)) s AN g2y p(—20) | —
3 8 g 8

>7ar { Ag(2)— f20) (Qut), Ag(Zop)— (20 (quit) }

>TM {Afp(zm,O)(at)a AZp(—Qw,O)(at)}
>M(x,t)

for all x € X, which implies that
o}

That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant §. Moreover, by (3.1), we see that

t t
Af@»—Jﬂx)(ﬁ)::ASD%m”*—D“g”m (5)

3t t
ZTM {ASng(z,O) (g) ,ADf(gz,O) (g)}

>0 {ADf(2,0)(t), Apf(—a,0)(E) }
201 { Xy 0) (0 Mgy (D

for all x € X. It means that d(f, Jf) < % < oo by the definition of d.
Therefore according to Theorem 3.1, the sequence {J" f} converges to
the unique fixed point F': X — Y of J in the set T'= {g € S|d(f,g) <
oo}, which is represented by

([0 s | s - fo0)

F(z):= nler;O

2. 4n nt1

for all x € X. Since

1 1

1_ad(f7<]f)<—

AP < g <5
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the inequality (3.2) holds. Next we will show that F'is a quadratic-
additive mapping. Let x,y € X. Then by (RN3) we have

t t
App(ey(t) 2 TM{AZ(F—J”f)(w+y) (E) AF- g f)@-y) (E) )

¢ /
Ap—ym p)(y—=) (1—0> s A f—F)(22) (E) :

t t
(3.3) A(Jnf—F)(zy) (E) 7ADJ”f(w,y) (5) }

for all x,y € X and n € N. The first five terms on the right hand side
of the above inequality tend to 1 as n — oo by the definition of F.
Now consider that

t t t
ADJnf(g;,y) (5) > TM{ADf(ZQﬁIf"y) <§) Abpsons,—amy) 2no —2ny) (8)
t
ADf(QZ""L;”,lQny) (g) ADf( 2'”':2 —2My) < ) }

4m¢ 4m¢
> TM{ADf(Q"a:,2”y) (T) Apf(—ana,—2ny) T)

2™t 2™t
ADf(2”m,2"y) (T) ADf( 2, —2ny) (T) }
4™ 4™
/ /
= TM{A@(x,y) (M) No(—a-y) (M) ’
2"t 2"t
/ /
A<p(w7y) (M) ’A<P(*w,fy) <4a_n> }

which tends to 1 as n — oo by (RN3) and 2 > 1 for all z,y € X.
Therefore it follows from (3.3) that

for each z,y € X and t > 0. By (RN1), this means that DF(z,y) =0

for all z,y € X. Assume that a < 1 and A@(w v) is continuous in z,y.
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If m, a,b,c,d are any fixed integers with a, c # 0, then we have

t
1 Agtznatyereran 1) 2 B A (04 to)e e40)0) (J)

A/
=D (az,ey) (M

for all z,y € X and ¢t > 0. Since m is arbitrary, we have

Hm AL onappye,2netayy) () = Hm AC G, ) (mt) =1

n—oo m—o0

for all z,y € X and t > 0. From these, we get the inequality

Ao(p—Fy(a)(5t) > Jim ™M {ADf—DF) (27 +1)0,—272) (F),
Ar—py(ntr141)2) (8 Ar—p)(—@rr141)2) (1),
A(g—py(@nt2)a) (8), M- py(—2mtia) (1) }
> lim AL (2n 1), —any (1), M((27TH 4+ 1)z, (2 — a)t),
M((2" +2)z, (2 — a)t), M (-2"'2, (2 — a)t) }
—1

for all x € X. From the above equality and the fact f(0) =0 = F(0),
we obtain f = F.

Case 2. We take o > 4 and suppose that ¢ satisfies the condition
(ii). Let the set (S,d) be as in the proof of Case 1. Now we consider
the mapping J : S — S defined by

Jg(x) =g (g) —g <—g) +2 (9 (9 tg (‘%))

for all g € S and x € X. Notice that

o) =2 (o (3) -0 (-5)) + 5 (0 (3) +o (-5)

forallz € X andn € N. Let f,g € S and let u € [0, 00| be an arbitrary
constant with d(g, f) < u. From the definition of d, (RN2), and (RN3),
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we have

4 4
Agg(a)- Jf(w)< ) =A3<g<;>—f<g>)+g<—§>—f<—)( >

>TM {A3<g( £)-1(% >)(3—ut) Ag-5)-r(-9) <§ )}

2T {Ag(%)—f(%) (%t) Agg)-r- ( >}
/ t / ¢

>TM {Acp(g,O) (a) 1 e(=5,0) (a)}

>M (z,t)

for all x € X, which implies that

A(T1, 7g) < ~d(f,g).

That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant 0 < % < 1. Moreover, by (3.1), we see that

t t t
Af@)-11) (5> =Aps(3.0 (5) > A(3.0) (5) > N (a0)(t)

for all z € X. It means that d(f, Jf) < é < o0 by the definition of d.
Therefore according to Theorem 3.1, the sequence {J" f} converges to
the unique fixed point F': X — Y of J in the set T'= {g € S|d(f,g) <
oo}, which is represented by

P = tim (27 (7 (50) ~ 1 (50) + 5 (1 (Ge) 7 (+50))

for all z € X. Since

d(f,F) <

d < —
the inequality (3.2) holds. Next we will show that F' is quadratic-
additive. Let z,y € X. Then by (RN3) we have the inequality (3.3)
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for all x,y € X and n € N. The first five terms on the right hand side
of the inequality (3.3) tend to 1 as n — oo by the definition of F'. Now
consider that

Apnf(a,y) (%) ZTM{A%"—lDf(;HﬁJ (é) Agen-1py(se,50) ( )
Aor—1pf( <é) A o ippize. s <é)}
ZTM{ Zp(a:,y) (%) ’Aip(—l’,—y) (4n+1>
Aoe.y) (2(3%) Ap(—e—y) (2(3%) }

which tends to 1 as n — oo by (RN3) for all z,y € X. Therefore it
follows from (3.3) that

Apr(zy)(t) =1
for each z,y € X and ¢t > 0. By (RN1), this means that DF(x,y) =0
for all z,y € X. It completes the proof of Theorem 3.2. 0

Now we have a generalized Hyers-Ulam stability of the quadratic-
additive functional equation (1.2) in the framework of normed spaces.
Let A, (t) = m Then (X, A,7ps) is an induced random normed
space, which leads us to get the following result.

COROLLARY 3.3. Let X be a linear space, Y be a complete normed-
space and f : X — Y be a mapping with f(0) = 0 for which there is
¢ : X? —[0,00) such that

[Df(z,y)|l < p(z,y)

for all z,y € X. If for all x,y € X ¢ satisfies one of the following
conditions:

(i) ap(z,y) > ¢(2z,2y) for some 0 < a < 2,

(i) ¢(2z,2y) > ap(z,y) for some 4 < o

then there exists a unique quadratic-additive mapping F : X — Y

such that
&(z)

I1£(z) — F@)| < { e

a—4

if ¢ satisfies (i),

if ¢ satisfies (ii)
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for all € X, where ®(x) is defined by

q)(aj) = ma‘X(SO('ra 0)7 (10(_377 0))
Moreover, if 0 < o < 1 under the condition (i), then f is a quadratic-
additive mapping.

Now we have Hyers-Ulam-Rassias stability results of the quadratic-
additive type functional equation (1.2).

COROLLARY 3.4. Let X be a normed space, p € RT\[1,2] and Y a
complete normed-space. If f : X — Y is a mapping such that

1D f (@, )l < [l + lyl?

for all z,y € X with f(0) = 0, then there exists a unique quadratic-
additive mapping F': X — Y such that

Ea

|f(2) - F(a)| < { s

o L Dp>2

if0<p<l1,

for all x € X.

Proof. If we denote by ¢(z,y) = ||z||” + ||y||P, then the induced
random normed space (X, A, 7)) holds the conditions of Theorem
3.3 with a = 2P. OJ

COROLLARY 3.5. Let X be a normed space and Y a Banach space.
Suppose that the mapping f : X — Y satisfies the inequality

1D f(, y)ll < Ofl]|” |yl

for all z,y € X, where § > 0, p,q > 0 and p+q € (0,1)U(2,00). Then
f is itself a quadratic additive mapping.

Proof. It follows from Theorem 3.2, by putting

o(x,y) = 0||z||”|y||?

for all z,y € X and a = 2PT9, O



30 Sun Sook Jin and Yang-Hi Lee

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J.
Math. Soc. Japan 2 (1950), 64—66.

[2] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes
Math. 27 (1984), 76-86.

[3] Z. Gajda, On the stability of additive mappings, Int. J. Math. Math. Sci. 14
(1991), 431-434.

[4] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approzi-
mately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.

[5] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad.
Sci. USA 27 (1941), 222-224.

[6] S.-S. Jin and Y.-H. Lee, A fized point approach to the stability of the Cauchy
additive and quadratic type functional equation, J. Appl. Math. 2011 (2011),
Article ID 817079, 16 pages.

[7] S.-S.Jin and Y.-H. Lee, A fized point approach to the stability of the quadratic-
additive functional equation, J. Korean Soc. Math. Educ. Ser. B Pure Appl.
Math. 18 (2011), 313-328.

[8] S.-S. Jin and Y.-H. Lee, On the stability of the generalized quadratic and ad-
ditive functional equation in random normed spaces via fixed point method,
Korean J. Math. 19 (2011), 1-15.

[9] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have
the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.

[10] H.-M. Kim, On the stability problem for a mized type of quartic and quadratic
functional equation, J. Math. Anal. Appl. 324 (2006), 358-372.

[11] Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean
Math. Soc. 45 (2008), 397-403.

[12] Y.-H. Lee and K.W. Jun, A generalization of the Hyers-Ulam-Rassias stability
of Jensen’s equation, J. Math. Anal. Appl. 238 (1999), 305-315.

[13] Y.-H. Lee and K.W. Jun, A generalization of the Hyers-Ulam-Rassias stability
of Pexider equation, J. Math. Anal. Appl. 246 (2000), 627-638.

[14] Y.-H. Lee and K. W. Jun, A note on the Hyers-Ulam-Rassias stability of Pez-
ider equation, J. Korean Math. Soc. 37 (2000), 111-124.

[15] Y.-H. Lee and K.-W. Jun, On the stability of approzimately additive mappings,
Proc. Amer. Math. Soc. 128 (2000), 1361-1369.

[16] B. Margolis and J.B. Diaz, A fized point theorem of the alternative for con-
tractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74
(1968), 305-309.

[17] D. Mihet and V. Radu, On the stability of the additive Cauchy functional
equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567—-572.

[18] V. Radu, The fized point alternative and the stability of functional equations,
Fixed Point Theory 4 (2003), 91-96.

[19] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.
Amer. Math. Soc. 72 (1978), 297-300.



On the stability of the quadratic-additive type functional equation 31

[20] I.A. Rus, Principles and applications of fized point theory, Editura. Dacia,
Cluj-Napoca, 1979 (in Romanian).

[21] B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsevier, North Holand,
New York, 1983.

[22] A.N. Serstnev, On the motion of a random normed space, Dokl. Akad. Nauk
SSSR 149 (1963), 280-283.

[23] S.M. Ulam, A collection of mathematical problems, Interscience, New York
(1968), 63.

Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea
E-mail: ssjin@gjue.ac.kr

Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea
E-mail: yanghi2@hanmail.net



