ON THE STABILITY OF THE QUADRATIC-ADDITIVE TYPE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD

Sun Sook Jin and Yang-Hi Lee*

Abstract. In this paper, we prove the stability in random normed
spaces via fixed point method for the functional equation

$$
2 f(x+y)+f(x-y)+f(y-x)-f(2 x)-f(2 y)=0 .
$$

1. Introduction

In 1940, S. M. Ulam [23] raised a question concerning the stability of homomorphisms: Given a group G_{1}, a metric group G_{2} with the metric $d(\cdot, \cdot)$, and a positive number ε, does there exist a $\delta>0$ such that if a mapping $f: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(f(x y), f(x) f(y))<\delta
$$

for all $x, y \in G_{1}$ then there exists a homomorphism $F: G_{1} \rightarrow G_{2}$ with

$$
d(f(x), F(x))<\varepsilon
$$

for all $x \in G_{1}$? As mentioned above, when this problem has a solution, we say that the homomorphisms from G_{1} to G_{2} are stable. In 1941, D. H. Hyers [5] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G_{1} and G_{2} are Banach spaces. Hyers' result was generalized by T. Aoki [1] for additive mappings and Th. M. Rassias [19] for linear mappings

[^0]by considering the stability problem with unbounded Cauchy differences. The paper of Th. M. Rassias has provided a lot of influence in the development of stability problems. The terminology Hyers-UlamRassias stability originated from these historical background. During the last decades, the stability problems of functional equations have been extensively investigated by a number of mathematicians, see [2][4], [6]-[15].

Recall, almost all subsequent proofs in this very active area have used Hyers' method, called a direct method. Namely, the function F, which is the solution of a functional equation, is explicitly constructed, starting from the given function f, by the formulae $F(x)=$ $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$ or $F(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$. In 2003, V. Radu [18] observed that the existence of the solution F of a functional equation and the estimation of the difference with the given function f can be obtained from the fixed point alternative. In 2008, D. Mihet and V. Radu [17] applied this method to prove the stability theorems of the Cauchy functional equation:

$$
\begin{equation*}
f(x+y)-f(x)-f(y)=0 \tag{1.1}
\end{equation*}
$$

in random normed spaces. We call solutions of (1.1) by additive mappings.

In this paper, using the fixed point method, we will prove the stability for the quadratic-additive type functional equation:

$$
\begin{equation*}
2 f(x+y)+f(x-y)+f(y-x)-f(2 x)-f(2 y)=0 \tag{1.2}
\end{equation*}
$$

in random normed spaces. It is easy to see that the mappings $f(x)=$ $a x^{2}+b x$ is a solution of the functional equation (1.2). The solution of the quadratic-additive type functional equation (1.2) is said to be a quadratic-additive mapping.

2. Preliminaries

In this section, we state the usual terminology, notations and conventions of the theory of random normed spaces, as in [21,22]. Firstly,
the space of all probability distribution functions is denoted by
$\Delta^{+}:=\{F: \mathbb{R} \cup\{-\infty, \infty\} \rightarrow[0,1] \mid F$ is left-continuous and nondecreasing on \mathbb{R}, where $F(0)=0$ and $F(+\infty)=1\}$.

And let the subset $D^{+} \subseteq \Delta^{+}$be the set $D^{+}:=\left\{F \in \Delta^{+} \mid l^{-} F(+\infty)=\right.$ $1\}$, where $l^{-} f(x)$ denotes the left limit of the function f at the point x. The space Δ^{+}is partially ordered by the usual pointwise ordering of functions, that is, $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. The maximal element for Δ^{+}in this order is the distribution function $\varepsilon_{0}: \mathbb{R} \cup\{0\} \rightarrow[0, \infty)$ given by

$$
\varepsilon_{0}(t)= \begin{cases}0, & \text { if } t \leq 0 \\ 1, & \text { if } t>0\end{cases}
$$

Definition 2.1. ([21]) A mapping $\tau:[0,1] \times[0,1] \rightarrow[0,1]$ is called a continuous triangular norm (briefly, a continuous t-norm) if τ satisfies the following conditions:
(a) τ is commutative and associative;
(b) τ is continuous;
(c) $\tau(a, 1)=a$ for all $a \in[0,1]$;
(d) $\tau(a, b) \leq \tau(c, d)$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$.

Typical examples of continuous t-norms are $\tau_{P}(a, b)=a b, \tau_{M}(a, b)=$ $\min (a, b)$ and $\tau_{L}(a, b)=\max (a+b-1,0)$.

Definition 2.2. ([22]) A random normed space (briefly, $R N$-space) is a triple (X, Λ, τ), where X is a vector space, τ is a continuous t-norm, and Λ is a mapping from X into D^{+}such that the following conditions hold:
(RN1) $\Lambda_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$,
(RN2) $\Lambda_{\alpha x}(t)=\Lambda_{x}(t /|\alpha|)$ for all x in $X, \alpha \neq 0$ and all $t \geq 0$,
(RN3) $\Lambda_{x+y}(t+s) \geq \tau\left(\Lambda_{x}(t), \Lambda_{y}(s)\right)$ for all $x, y \in X$ and all $t, s \geq 0$.
If $(X,\|\cdot\|)$ is a normed space, we can define a mapping $\Lambda: X \rightarrow D^{+}$ by

$$
\Lambda_{x}(t)=\frac{t}{t+\|x\|}
$$

for all $x \in X$ and $t>0$. Then $\left(X, \Lambda, \tau_{M}\right)$ is a random normed space, which is called the induced random normed space.

Definition 2.3. Let (X, Λ, τ) be an $R N$-space.
(i) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to a point $x \in X$ if, for every $t>0$ and $\varepsilon>0$, there exists a positive integer N such that $\Lambda_{x_{n}-x}(t)>1-\varepsilon$ whenever $n \geq N$.
(ii) A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if, for every $t>0$ and $\varepsilon>0$, there exists a positive integer N such that $\Lambda_{x_{n}-x_{m}}(t)>1-\varepsilon$ whenever $n \geq m \geq N$.
(iii) An $R N$-space (X, Λ, τ) is said to be complete if and only if every Cauchy sequence in X is convergent to a point in X.

Theorem 2.4. ([21]) If (X, Λ, τ) is an $R N$-space and $\left\{x_{n}\right\}$ is a sequence such that $x_{n} \rightarrow x$, then $\lim _{n \rightarrow \infty} \Lambda_{x_{n}}(t)=\Lambda_{x}(t)$.

3. Main results

We recall the fundamental result in the fixed point theory.
Theorem 3.1. ([16] or [20]) Suppose that a complete generalized metric space (X, d), which means that the metric d may assume infinite values, and a strictly contractive mapping $J: X \rightarrow X$ with the Lipschitz constant $0<L<1$ are given. Then, for each given element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=+\infty, \forall n \in \mathbb{N} \cup\{0\}
$$

or there exists a nonnegative integer k such that:
(1) $d\left(J^{n} x, J^{n+1} x\right)<+\infty$ for all $n \geq k$;
(2) the sequence $\left\{J^{n} x\right\}$ is convergent to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in $Y:=\left\{y \in X, d\left(J^{k} x, y\right)<\right.$ $+\infty\}$;
(4) $d\left(y, y^{*}\right) \leq(1 /(1-L)) d(y, J y)$ for all $y \in Y$.

Let X and Y be vector spaces. We use the following abbreviation for a given mapping $f: X \rightarrow Y$

$$
D f(x, y):=2 f(x+y)+f(x-y)+f(y-x)-f(2 x)-f(2 y)
$$

for all $x, y \in X$. Now we will establish the stability for the functional equation (1.2) in random normed spaces via fixed point method.

Theorem 3.2. Let X be a linear space, $\left(Z, \Lambda^{\prime}, \tau_{M}\right)$ be an $R N$-space, $\left(Y, \Lambda, \tau_{M}\right)$ be a complete $R N$-space and $f: X \rightarrow Y$ be a mapping with $f(0)=0$ for which there is $\varphi: X^{2} \rightarrow Z$ such that

$$
\begin{equation*}
\Lambda_{D f(x, y)}(t) \geq \Lambda_{\varphi(x, y)}^{\prime}(t) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. If for all $x, y \in X$ and $t>0 \varphi$ satisfies one of the following conditions:
(i) $\Lambda_{\alpha \varphi(x, y)}^{\prime}(t) \leq \Lambda_{\varphi(2 x, 2 y)}^{\prime}(t)$ for some $0<\alpha<2$,
(ii) $\Lambda_{\varphi(2 x, 2 y)}^{\prime}(t) \leq \Lambda_{\alpha \varphi(x, y)}^{\prime}(t)$ for some $4<\alpha$
then there exists a unique quadratic-additive mapping $F: X \rightarrow Y$ such that

$$
\Lambda_{f(x)-F(x)}(t) \geq \begin{cases}M(x,(2-\alpha) t) & \text { if } \varphi \text { satisfies (i) } \tag{3.2}\\ M(x,(\alpha-4) t) & \text { if } \varphi \text { satisfies (ii) }\end{cases}
$$

for all $x \in X$ and $t>0$, where

$$
M(x, t):=\tau_{M}\left\{\Lambda_{\varphi(x, 0)}^{\prime}(t), \Lambda_{\varphi(-x, 0)}^{\prime}(t)\right\}
$$

Moreover if $\alpha<1$ and $\Lambda_{\varphi(x, y)}^{\prime}$ is continuous in x,y under the condition (i), then f is a quadratic-additive mapping.

Proof. We will prove the theorem in two cases, φ satisfies the condition (i) or (ii).

Case 1. Assume that φ satisfies the condition (i). Let S be the set of all functions $g: X \rightarrow Y$ with $g(0)=0$ and introduce a generalized metric on S by

$$
d(g, h):=\inf \left\{u \in \mathbb{R}^{+}: \Lambda_{g(x)-h(x)}(u t) \geq M(x, t) \text { for all } x \in X\right\} .
$$

Consider the mapping $J: S \rightarrow S$ defined by

$$
J f(x):=\frac{f(2 x)-f(-2 x)}{4}+\frac{f(2 x)+f(-2 x)}{8}
$$

then we have

$$
J^{n} f(x)=\frac{1}{2}\left(4^{-n}\left(f\left(2^{n} x\right)+f\left(-2^{n} x\right)\right)+2^{-n}\left(f\left(2^{n} x\right)-f\left(-2^{n} x\right)\right)\right)
$$

for all $x \in X$ and $n \in \mathbb{N}$. Let $f, g \in S$ and let $u \in[0, \infty]$ be an arbitrary constant with $d(g, f) \leq u$. From the definition of d, (RN2), and (RN3), for the given $0<\alpha<2$ we have

$$
\begin{aligned}
\Lambda_{J g(x)-J f(x)}\left(\frac{\alpha u}{2} t\right) & =\Lambda_{\frac{3(g(2 x)-f(2 x))}{8}-\frac{g(-2 x)-f(-2 x)}{8}}\left(\frac{\alpha u}{2} t\right) \\
& \geq \tau_{M}\left\{\Lambda_{\frac{3(g(2 x x-f(2 x))}{8}}\left(\frac{3 \alpha u t}{8}\right), \Lambda_{\frac{g(-2 x)-f(-2 x)}{8}}\left(\frac{\alpha u t}{8}\right)\right\} \\
& \geq \tau_{M}\left\{\Lambda_{g(2 x)-f(2 x)}(\alpha u t), \Lambda_{g(-2 x)-f(-2 x)}(\alpha u t)\right\} \\
& \geq \tau_{M}\left\{\Lambda_{\varphi(2 x, 0)}^{\prime}(\alpha t), \Lambda_{\varphi(-2 x, 0)}^{\prime}(\alpha t)\right\} \\
& \geq M(x, t)
\end{aligned}
$$

for all $x \in X$, which implies that

$$
d(J f, J g) \leq \frac{\alpha}{2} d(f, g)
$$

That is, J is a strictly contractive self-mapping of S with the Lipschitz constant $\frac{\alpha}{2}$. Moreover, by (3.1), we see that

$$
\begin{aligned}
\Lambda_{f(x)-J f(x)}\left(\frac{t}{2}\right) & =\Lambda_{\frac{3 D f(x, 0)}{8}-\frac{D f(-x, 0)}{8}}\left(\frac{t}{2}\right) \\
& \geq \tau_{M}\left\{\Lambda_{\frac{3 D f(x, 0)}{8}}\left(\frac{3 t}{8}\right), \Lambda_{\frac{D f(-x, 0)}{8}}\left(\frac{t}{8}\right)\right\} \\
& \geq \tau_{M}\left\{\Lambda_{D f(x, 0)}(t), \Lambda_{D f(-x, 0)}(t)\right\} \\
& \geq \tau_{M}\left\{\Lambda_{\varphi(x, 0)}^{\prime}(t), \Lambda_{\varphi(-x, 0)}^{\prime}(t)\right\}
\end{aligned}
$$

for all $x \in X$. It means that $d(f, J f) \leq \frac{1}{2}<\infty$ by the definition of d. Therefore according to Theorem 3.1, the sequence $\left\{J^{n} f\right\}$ converges to the unique fixed point $F: X \rightarrow Y$ of J in the set $T=\{g \in S \mid d(f, g)<$ $\infty\}$, which is represented by

$$
F(x):=\lim _{n \rightarrow \infty}\left(\frac{f\left(2^{n} x\right)+f\left(-2^{n} x\right)}{2 \cdot 4^{n}}+\frac{f\left(2^{n} x\right)-f\left(-2^{n} x\right)}{2^{n+1}}\right)
$$

for all $x \in X$. Since

$$
d(f, F) \leq \frac{1}{1-\frac{\alpha}{2}} d(f, J f) \leq \frac{1}{2-\alpha}
$$

the inequality (3.2) holds. Next we will show that F is a quadraticadditive mapping. Let $x, y \in X$. Then by (RN3) we have

$$
\begin{aligned}
\Lambda_{D F(x, y)}(t) \geq \tau_{M}\{ & \Lambda_{2\left(F-J^{n} f\right)(x+y)}\left(\frac{t}{10}\right), \Lambda_{\left(F-J^{n} f\right)(x-y)}\left(\frac{t}{10}\right), \\
& \Lambda_{\left(F-J^{n} f\right)(y-x)}\left(\frac{t}{10}\right), \Lambda_{\left(J^{n} f-F\right)(2 x)}\left(\frac{t}{10}\right), \\
3) \quad & \left.\Lambda_{\left(J^{n} f-F\right)(2 y)}\left(\frac{t}{10}\right), \Lambda_{D J^{n} f(x, y)}\left(\frac{t}{2}\right)\right\}
\end{aligned}
$$

for all $x, y \in X$ and $n \in \mathbb{N}$. The first five terms on the right hand side of the above inequality tend to 1 as $n \rightarrow \infty$ by the definition of F. Now consider that

$$
\begin{aligned}
& \Lambda_{D J^{n} f(x, y)}\left(\frac{t}{2}\right) \geq \tau_{M}\left\{\Lambda_{\frac{D f\left(2^{n} x, 2^{n} y\right)}{2 \cdot 44^{n}}}\left(\frac{t}{8}\right), \Lambda_{\frac{D f\left(-2^{n} x, 2^{n} y\right)}{2 \cdot 4^{n}}}\left(\frac{t}{8}\right),\right. \\
& \left.\Lambda_{\frac{D f\left(2^{2} x, 2^{n} y\right)}{2 \cdot 2^{n}}}\left(\frac{t}{8}\right), \Lambda_{\frac{D f\left(-2^{n} x,-2^{n} y\right)}{2 \cdot 2^{n}}}\left(\frac{t}{8}\right)\right\} \\
& \geq \tau_{M}\left\{\Lambda_{D f\left(2^{n} x, 2^{n} y\right)}\left(\frac{4^{n} t}{4}\right), \Lambda_{D f\left(-2^{n} x,-2^{n} y\right)}\left(\frac{4^{n} t}{4}\right),\right. \\
& \left.\Lambda_{D f\left(2^{n} x, 2^{n} y\right)}\left(\frac{2^{n} t}{4}\right), \Lambda_{D f\left(-2^{n} x,-2^{n} y\right)}\left(\frac{2^{n} t}{4}\right)\right\} \\
& \geq \tau_{M}\left\{\Lambda_{\varphi(x, y)}^{\prime}\left(\frac{4^{n} t}{4 \alpha^{n}}\right), \Lambda_{\varphi(-x,-y)}^{\prime}\left(\frac{4^{n} t}{4 \alpha^{n}}\right),\right. \\
& \left.\Lambda_{\varphi(x, y)}^{\prime}\left(\frac{2^{n} t}{4 \alpha^{n}}\right), \Lambda_{\varphi(-x,-y)}^{\prime}\left(\frac{2^{n} t}{4 \alpha^{n}}\right)\right\}
\end{aligned}
$$

which tends to 1 as $n \rightarrow \infty$ by (RN3) and $\frac{2}{\alpha}>1$ for all $x, y \in X$. Therefore it follows from (3.3) that

$$
\Lambda_{D F(x, y)}(t)=1
$$

for each $x, y \in X$ and $t>0$. By (RN1), this means that $D F(x, y)=0$ for all $x, y \in X$. Assume that $\alpha<1$ and $\Lambda_{\varphi(x, y)}^{\prime}$ is continuous in x, y.

If m, a, b, c, d are any fixed integers with $a, c \neq 0$, then we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \Lambda_{\varphi\left(\left(2^{n} a+b\right) x,\left(2^{n} c+d\right) y\right)}^{\prime}(t) & \geq \lim _{n \rightarrow \infty} \Lambda_{\varphi\left(\left(a+\frac{b}{2^{n}}\right) x,\left(c+\frac{d}{2^{n}}\right) y\right)}^{\prime}\left(\frac{t}{\alpha^{n}}\right) \\
& =\lim _{n \rightarrow \infty} \Lambda_{\varphi\left(\left(a+\frac{b}{2^{n}}\right) x,\left(c+\frac{d}{2^{n}}\right) y\right)}^{\prime}(m t) \\
& =\Lambda_{\varphi(a x, c y)}^{\prime}(m t)
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. Since m is arbitrary, we have

$$
\lim _{n \rightarrow \infty} \Lambda_{\varphi\left(\left(2^{n} a+b\right) x,\left(2^{n} c+d\right) y\right)}^{\prime}(t) \geq \lim _{m \rightarrow \infty} \Lambda_{\varphi(a x, c y)}^{\prime}(m t)=1
$$

for all $x, y \in X$ and $t>0$. From these, we get the inequality

$$
\begin{aligned}
& \Lambda_{2(f-F)(x)}(5 t) \geq \lim _{n \rightarrow \infty} \tau_{M}\left\{\Lambda_{(D f-D F)\left(\left(2^{n}+1\right) x,-2^{n} x\right)}(t),\right. \\
& \Lambda_{(F-f)\left(\left(2^{n+1}+1\right) x\right)}(t), \Lambda_{(F-f)\left(-\left(2^{n+1}+1\right) x\right)}(t), \\
&\left.\Lambda_{(f-F)\left(\left(2^{n+1}+2\right) x\right)}(t), \Lambda_{(f-F)\left(-2^{n+1} x\right)}(t)\right\} \\
& \geq \lim _{n \rightarrow \infty} \tau_{M}\left\{\Lambda_{\varphi\left(\left(2^{n}+1\right) x,-2^{n} x\right)}^{\prime}(t), M\left(\left(2^{n+1}+1\right) x,(2-\alpha) t\right),\right. \\
&\left.M\left(\left(2^{n+1}+2\right) x,(2-\alpha) t\right), M\left(-2^{n+1} x,(2-\alpha) t\right)\right\} \\
&=1
\end{aligned}
$$

for all $x \in X$. From the above equality and the fact $f(0)=0=F(0)$, we obtain $f \equiv F$.

Case 2. We take $\alpha>4$ and suppose that φ satisfies the condition (ii). Let the set (S, d) be as in the proof of Case 1. Now we consider the mapping $J: S \rightarrow S$ defined by

$$
J g(x):=g\left(\frac{x}{2}\right)-g\left(-\frac{x}{2}\right)+2\left(g\left(\frac{x}{2}\right)+g\left(-\frac{x}{2}\right)\right)
$$

for all $g \in S$ and $x \in X$. Notice that

$$
J^{n} g(x)=2^{n-1}\left(g\left(\frac{x}{2^{n}}\right)-g\left(-\frac{x}{2^{n}}\right)\right)+\frac{4^{n}}{2}\left(g\left(\frac{x}{2^{n}}\right)+g\left(-\frac{x}{2^{n}}\right)\right)
$$

for all $x \in X$ and $n \in \mathbb{N}$. Let $f, g \in S$ and let $u \in[0, \infty]$ be an arbitrary constant with $d(g, f) \leq u$. From the definition of d, (RN2), and (RN3),
we have

$$
\begin{aligned}
\Lambda_{J g(x)-J f(x)}\left(\frac{4 u}{\alpha} t\right) & =\Lambda_{3\left(g\left(\frac{x}{2}\right)-f\left(\frac{x}{2}\right)\right)+g\left(-\frac{x}{2}\right)-f\left(-\frac{x}{2}\right)}\left(\frac{4 u}{\alpha} t\right) \\
& \geq \tau_{M}\left\{\Lambda_{3\left(g\left(\frac{x}{2}\right)-f\left(\frac{x}{2}\right)\right)}\left(\frac{3 u}{\alpha} t\right), \Lambda_{g\left(-\frac{x}{2}\right)-f\left(-\frac{x}{2}\right)}\left(\frac{u}{\alpha} t\right)\right\} \\
& \geq \tau_{M}\left\{\Lambda_{g\left(\frac{x}{2}\right)-f\left(\frac{x}{2}\right)}\left(\frac{u}{\alpha} t\right), \Lambda_{g\left(-\frac{x}{2}\right)-f\left(-\frac{x}{2}\right)}\left(\frac{u}{\alpha} t\right)\right\} \\
& \geq \tau_{M}\left\{\Lambda_{\varphi\left(\frac{x}{2}, 0\right)}^{\prime}\left(\frac{t}{\alpha}\right), \Lambda_{\varphi\left(-\frac{x}{2}, 0\right)}^{\prime}\left(\frac{t}{\alpha}\right)\right\} \\
& \geq M(x, t)
\end{aligned}
$$

for all $x \in X$, which implies that

$$
d(J f, J g) \leq \frac{4}{\alpha} d(f, g)
$$

That is, J is a strictly contractive self-mapping of S with the Lipschitz constant $0<\frac{4}{\alpha}<1$. Moreover, by (3.1), we see that

$$
\Lambda_{f(x)-J f(x)}\left(\frac{t}{\alpha}\right)=\Lambda_{D f\left(\frac{x}{2}, 0\right)}\left(\frac{t}{\alpha}\right) \geq \Lambda_{\varphi\left(\frac{x}{2}, 0\right)}^{\prime}\left(\frac{t}{\alpha}\right) \geq \Lambda_{\varphi(x, 0)}^{\prime}(t)
$$

for all $x \in X$. It means that $d(f, J f) \leq \frac{1}{\alpha}<\infty$ by the definition of d. Therefore according to Theorem 3.1, the sequence $\left\{J^{n} f\right\}$ converges to the unique fixed point $F: X \rightarrow Y$ of J in the set $T=\{g \in S \mid d(f, g)<$ $\infty\}$, which is represented by
$F(x):=\lim _{n \rightarrow \infty}\left(2^{n-1}\left(f\left(\frac{x}{2^{n}}\right)-f\left(-\frac{x}{2^{n}}\right)\right)+\frac{4^{n}}{2}\left(f\left(\frac{x}{2^{n}}\right)+f\left(-\frac{x}{2^{n}}\right)\right)\right)$
for all $x \in X$. Since

$$
d(f, F) \leq \frac{1}{1-\frac{4}{\alpha}} d(f, J f) \leq \frac{1}{\alpha-4}
$$

the inequality (3.2) holds. Next we will show that F is quadraticadditive. Let $x, y \in X$. Then by (RN3) we have the inequality (3.3)
for all $x, y \in X$ and $n \in \mathbb{N}$. The first five terms on the right hand side of the inequality (3.3) tend to 1 as $n \rightarrow \infty$ by the definition of F. Now consider that

$$
\begin{aligned}
\Lambda_{D J^{n} f(x, y)}\left(\frac{t}{2}\right) \geq & \tau_{M}\left\{\Lambda_{2^{2 n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}\left(\frac{t}{8}\right), \Lambda_{2^{2 n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right)}\left(\frac{t}{8}\right),\right. \\
& \left.\Lambda_{2^{n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}\left(\frac{t}{8}\right), \Lambda_{-2^{n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right)}\left(\frac{t}{8}\right)\right\} \\
\geq & \tau_{M}\left\{\Lambda_{\varphi(x, y)}^{\prime}\left(\frac{\alpha^{n} t}{4^{n+1}}\right), \Lambda_{\varphi(-x,-y)}^{\prime}\left(\frac{\alpha^{n} t}{4^{n+1}}\right),\right. \\
& \left.\Lambda_{\varphi(x, y)}^{\prime}\left(\frac{\alpha^{n} t}{2^{n+2}}\right), \Lambda_{\varphi(-x,-y)}^{\prime}\left(\frac{\alpha^{n} t}{2^{n+2}}\right)\right\}
\end{aligned}
$$

which tends to 1 as $n \rightarrow \infty$ by (RN3) for all $x, y \in X$. Therefore it follows from (3.3) that

$$
\Lambda_{D F(x, y)}(t)=1
$$

for each $x, y \in X$ and $t>0$. By (RN1), this means that $D F(x, y)=0$ for all $x, y \in X$. It completes the proof of Theorem 3.2.

Now we have a generalized Hyers-Ulam stability of the quadraticadditive functional equation (1.2) in the framework of normed spaces. Let $\Lambda_{x}(t)=\frac{t}{t+\|x\|}$. Then $\left(X, \Lambda, \tau_{M}\right)$ is an induced random normed space, which leads us to get the following result.

Corollary 3.3. Let X be a linear space, Y be a complete normedspace and $f: X \rightarrow Y$ be a mapping with $f(0)=0$ for which there is $\varphi: X^{2} \rightarrow[0, \infty)$ such that

$$
\|D f(x, y)\| \leq \varphi(x, y)
$$

for all $x, y \in X$. If for all $x, y \in X \varphi$ satisfies one of the following conditions:
(i) $\alpha \varphi(x, y) \geq \varphi(2 x, 2 y)$ for some $0<\alpha<2$,
(ii) $\varphi(2 x, 2 y) \geq \alpha \varphi(x, y)$ for some $4<\alpha$
then there exists a unique quadratic-additive mapping $F: X \rightarrow Y$ such that

$$
\|f(x)-F(x)\| \leq \begin{cases}\frac{\Phi(x)}{2-\alpha} & \text { if } \varphi \text { satisfies (i) } \\ \frac{\Phi(x)}{\alpha-4} & \text { if } \varphi \text { satisfies (ii) }\end{cases}
$$

for all $x \in X$, where $\Phi(x)$ is defined by

$$
\Phi(x)=\max (\varphi(x, 0), \varphi(-x, 0))
$$

Moreover, if $0<\alpha<1$ under the condition (i), then f is a quadraticadditive mapping.

Now we have Hyers-Ulam-Rassias stability results of the quadraticadditive type functional equation (1.2).

Corollary 3.4. Let X be a normed space, $p \in \mathbb{R}^{+} \backslash[1,2]$ and Y a complete normed-space. If $f: X \rightarrow Y$ is a mapping such that

$$
\|D f(x, y)\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $x, y \in X$ with $f(0)=0$, then there exists a unique quadraticadditive mapping $F: X \rightarrow Y$ such that

$$
\|f(x)-F(x)\| \leq \begin{cases}\frac{\|x\|^{p}}{22^{p}} & \text { if } 0 \leq p<1, \\ \frac{\|x\|^{p}}{2^{p}-4} & \text { if } p>2\end{cases}
$$

for all $x \in X$.
Proof. If we denote by $\varphi(x, y)=\|x\|^{p}+\|y\|^{p}$, then the induced random normed space (X, Λ_{x}, τ_{M}) holds the conditions of Theorem 3.3 with $\alpha=2^{p}$.

Corollary 3.5. Let X be a normed space and Y a Banach space. Suppose that the mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\|D f(x, y)\| \leq \theta\|x\|^{p}\|y\|^{q}
$$

for all $x, y \in X$, where $\theta \geq 0, p, q>0$ and $p+q \in(0,1) \cup(2, \infty)$. Then f is itself a quadratic additive mapping.

Proof. It follows from Theorem 3.2, by putting

$$
\varphi(x, y):=\theta\|x\|^{p}\|y\|^{q}
$$

for all $x, y \in X$ and $\alpha=2^{p+q}$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[3] Z. Gajda, On the stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), 431-434.
[4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[5] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
[6] S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the Cauchy additive and quadratic type functional equation, J. Appl. Math. 2011 (2011), Article ID 817079, 16 pages.
[7] S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the quadraticadditive functional equation, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), 313-328.
[8] S.-S. Jin and Y.-H. Lee, On the stability of the generalized quadratic and additive functional equation in random normed spaces via fixed point method, Korean J. Math. 19 (2011), 1-15.
[9] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.
[10] H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358-372.
[11] Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), 397-403.
[12] Y.-H. Lee and K.W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
[13] Y.-H. Lee and K.W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl. 246 (2000), 627-638.
[14] Y.-H. Lee and K. W. Jun, A note on the Hyers-Ulam-Rassias stability of Pexider equation, J. Korean Math. Soc. 37 (2000), 111-124.
[15] Y.-H. Lee and K.-W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), 1361-1369.
[16] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. $\mathbf{7 4}$ (1968), 305-309.
[17] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572.
[18] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
[19] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[20] I.A. Rus, Principles and applications of fixed point theory, Editura. Dacia, Cluj-Napoca, 1979 (in Romanian).
[21] B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsevier, North Holand, New York, 1983.
[22] A.N. S̆erstnev, On the motion of a random normed space, Dokl. Akad. Nauk SSSR 149 (1963), 280-283.
[23] S.M. Ulam, A collection of mathematical problems, Interscience, New York (1968), 63.

Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea
E-mail: ssjin@gjue.ac.kr
Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea
E-mail: yanghi2@hanmail.net

[^0]: Received October 27, 2011. Revised January 18, 2012. Accepted January 25, 2012.

 2010 Mathematics Subject Classification: 54E40, 39B82, 46S50, 46S40.
 Key words and phrases: stability, additive mapping, random normed space, quadratic-additive type functional equation, fixed point theory.

 * Corresponding author.

