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ON THE STABILITY OF THE QUADRATIC-ADDITIVE

TYPE FUNCTIONAL EQUATION IN RANDOM

NORMED SPACES VIA FIXED POINT METHOD

Sun Sook Jin and Yang-Hi Lee∗

Abstract. In this paper, we prove the stability in random normed
spaces via fixed point method for the functional equation

2f(x+ y) + f(x− y) + f(y − x)− f(2x)− f(2y) = 0.

1. Introduction

In 1940, S. M. Ulam [23] raised a question concerning the stability
of homomorphisms: Given a group G1, a metric group G2 with the
metric d(·, ·), and a positive number ε, does there exist a δ > 0 such
that if a mapping f : G1 → G2 satisfies the inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G1 then there exists a homomorphism F : G1 → G2 with

d(f(x), F (x)) < ε

for all x ∈ G1? As mentioned above, when this problem has a solution,
we say that the homomorphisms from G1 to G2 are stable. In 1941,
D. H. Hyers [5] gave a partial solution of Ulam’s problem for the case
of approximate additive mappings under the assumption that G1 and
G2 are Banach spaces. Hyers’ result was generalized by T. Aoki [1]
for additive mappings and Th. M. Rassias [19] for linear mappings
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by considering the stability problem with unbounded Cauchy differ-
ences. The paper of Th. M. Rassias has provided a lot of influence in
the development of stability problems. The terminology Hyers-Ulam-
Rassias stability originated from these historical background. During
the last decades, the stability problems of functional equations have
been extensively investigated by a number of mathematicians, see [2]-
[4], [6]-[15].

Recall, almost all subsequent proofs in this very active area have
used Hyers’ method, called a direct method. Namely, the function
F , which is the solution of a functional equation, is explicitly con-
structed, starting from the given function f , by the formulae F (x) =
limn→∞

1
2n f(2

nx) or F (x) = limn→∞ 2nf( x
2n ). In 2003, V. Radu [18]

observed that the existence of the solution F of a functional equation
and the estimation of the difference with the given function f can be
obtained from the fixed point alternative. In 2008, D. Mihet and V.
Radu [17] applied this method to prove the stability theorems of the
Cauchy functional equation:

(1.1) f(x+ y)− f(x)− f(y) = 0

in random normed spaces. We call solutions of (1.1) by additive map-
pings.

In this paper, using the fixed point method, we will prove the sta-
bility for the quadratic-additive type functional equation:

(1.2) 2f(x+ y) + f(x− y) + f(y − x)− f(2x)− f(2y) = 0

in random normed spaces. It is easy to see that the mappings f(x) =
ax2 + bx is a solution of the functional equation (1.2). The solution
of the quadratic-additive type functional equation (1.2) is said to be a
quadratic-additive mapping.

2. Preliminaries

In this section, we state the usual terminology, notations and con-
ventions of the theory of random normed spaces, as in [21,22]. Firstly,
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the space of all probability distribution functions is denoted by

∆+ := {F : R ∪ {−∞,∞} → [0, 1]
∣∣F is left-continuous

and nondecreasing on R, where F (0) = 0 and F (+∞) = 1}.

And let the subset D+ ⊆ ∆+ be the set D+ := {F ∈ ∆+|l−F (+∞) =
1}, where l−f(x) denotes the left limit of the function f at the point
x. The space ∆+ is partially ordered by the usual pointwise ordering
of functions, that is, F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R.
The maximal element for ∆+ in this order is the distribution function
ε0 : R ∪ {0} → [0,∞) given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 2.1. ([21]) A mapping τ : [0, 1]× [0, 1] → [0, 1] is called
a continuous triangular norm (briefly, a continuous t-norm) if τ satis-
fies the following conditions:

(a) τ is commutative and associative;
(b) τ is continuous;
(c) τ(a, 1) = a for all a ∈ [0, 1];
(d) τ(a, b) ≤ τ(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are τP (a, b) = ab, τM (a, b) =
min(a, b) and τL(a, b) = max(a+ b− 1, 0).

Definition 2.2. ([22]) A random normed space (briefly, RN-space)
is a triple (X,Λ, τ), whereX is a vector space, τ is a continuous t-norm,
and Λ is a mapping from X into D+ such that the following conditions
hold:

(RN1) Λx(t) = ε0(t) for all t > 0 if and only if x = 0,
(RN2) Λαx(t) = Λx(t/|α|) for all x in X, α ̸= 0 and all t ≥ 0,
(RN3) Λx+y(t+s) ≥ τ(Λx(t),Λy(s)) for all x, y ∈ X and all t, s ≥ 0.

If (X, ∥·∥) is a normed space, we can define a mapping Λ : X → D+

by

Λx(t) =
t

t+ ∥x∥
for all x ∈ X and t > 0. Then (X,Λ, τM ) is a random normed space,
which is called the induced random normed space.
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Definition 2.3. Let (X,Λ, τ) be an RN -space.
(i) A sequence {xn} in X is said to be convergent to a point x ∈ X
if, for every t > 0 and ε > 0, there exists a positive integer N such
that Λxn−x(t) > 1− ε whenever n ≥ N .
(ii) A sequence {xn} in X is called a Cauchy sequence if, for ev-
ery t > 0 and ε > 0, there exists a positive integer N such that
Λxn−xm(t) > 1− ε whenever n ≥ m ≥ N .
(iii) An RN-space (X,Λ, τ) is said to be complete if and only if every

Cauchy sequence in X is convergent to a point in X.

Theorem 2.4. ([21]) If (X,Λ, τ) is an RN-space and {xn} is a
sequence such that xn → x, then limn→∞ Λxn(t) = Λx(t).

3. Main results

We recall the fundamental result in the fixed point theory.

Theorem 3.1. ([16] or [20]) Suppose that a complete generalized
metric space (X, d), which means that the metric d may assume infi-
nite values, and a strictly contractive mapping J : X → X with the
Lipschitz constant 0 < L < 1 are given. Then, for each given element
x ∈ X, either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},

or there exists a nonnegative integer k such that:
(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;
(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) <
+∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

Let X and Y be vector spaces. We use the following abbreviation
for a given mapping f : X → Y

Df(x, y) := 2f(x+ y) + f(x− y) + f(y − x)− f(2x)− f(2y)

for all x, y ∈ X. Now we will establish the stability for the functional
equation (1.2) in random normed spaces via fixed point method.
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Theorem 3.2. LetX be a linear space, (Z,Λ′, τM ) be an RN-space,
(Y,Λ, τM ) be a complete RN-space and f : X → Y be a mapping with
f(0) = 0 for which there is φ : X2 → Z such that

(3.1) ΛDf(x,y)(t) ≥ Λ′
φ(x,y)(t)

for all x, y ∈ X and t > 0. If for all x, y ∈ X and t > 0 φ satisfies one
of the following conditions:
(i) Λ′

αφ(x,y)(t) ≤ Λ′
φ(2x,2y)(t) for some 0 < α < 2,

(ii) Λ′
φ(2x,2y)(t) ≤ Λ′

αφ(x,y)(t) for some 4 < α

then there exists a unique quadratic-additive mapping F : X → Y
such that

(3.2) Λf(x)−F (x)(t) ≥
{

M(x, (2− α)t) if φ satisfies (i),

M(x, (α− 4)t) if φ satisfies (ii)

for all x ∈ X and t > 0, where

M(x, t) := τM
{
Λ′
φ(x,0)(t),Λ

′
φ(−x,0)(t)

}
.

Moreover if α < 1 and Λ′
φ(x,y) is continuous in x,y under the condition

(i), then f is a quadratic-additive mapping.

Proof. We will prove the theorem in two cases, φ satisfies the con-
dition (i) or (ii).

Case 1. Assume that φ satisfies the condition (i). Let S be the set
of all functions g : X → Y with g(0) = 0 and introduce a generalized
metric on S by

d(g, h) := inf
{
u ∈ R+ : Λg(x)−h(x)(ut) ≥ M(x, t) for all x ∈ X

}
.

Consider the mapping J : S → S defined by

Jf(x) :=
f(2x)− f(−2x)

4
+

f(2x) + f(−2x)

8

then we have

Jnf(x) =
1

2

(
4−n (f(2nx) + f(−2nx)) + 2−n (f(2nx)− f(−2nx))

)
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for all x ∈ X and n ∈ N. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary
constant with d(g, f) ≤ u. From the definition of d, (RN2), and (RN3),
for the given 0 < α < 2 we have

ΛJg(x)−Jf(x)

(αu
2
t
)
=Λ 3(g(2x)−f(2x))

8 − g(−2x)−f(−2x)
8

(αu
2
t
)

≥τM

{
Λ 3(g(2x)−f(2x))

8

(
3αut

8

)
,Λ g(−2x)−f(−2x)

8

(
αut

8

)}
≥τM

{
Λg(2x)−f(2x)(αut),Λg(−2x)−f(−2x) (αut)

}
≥τM

{
Λ′
φ(2x,0)(αt),Λ

′
φ(−2x,0)(αt)

}
≥M(x, t)

for all x ∈ X, which implies that

d(Jf, Jg) ≤ α

2
d(f, g).

That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant α

2 . Moreover, by (3.1), we see that

Λf(x)−Jf(x)

(
t

2

)
=Λ 3Df(x,0)

8 −Df(−x,0)
8

(
t

2

)
≥τM

{
Λ 3Df(x,0)

8

(
3t

8

)
,ΛDf(−x,0)

8

(
t

8

)}
≥τM

{
ΛDf(x,0)(t),ΛDf(−x,0)(t)

}
≥τM

{
Λ′
φ(x,0)(t),Λ

′
φ(−x,0)(t)

}
for all x ∈ X. It means that d(f, Jf) ≤ 1

2 < ∞ by the definition of d.
Therefore according to Theorem 3.1, the sequence {Jnf} converges to
the unique fixed point F : X → Y of J in the set T = {g ∈ S|d(f, g) <
∞}, which is represented by

F (x) := lim
n→∞

(
f(2nx) + f(−2nx)

2 · 4n
+

f(2nx)− f(−2nx)

2n+1

)
for all x ∈ X. Since

d(f, F ) ≤ 1

1− α
2

d(f, Jf) ≤ 1

2− α
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the inequality (3.2) holds. Next we will show that F is a quadratic-
additive mapping. Let x, y ∈ X. Then by (RN3) we have

ΛDF (x,y)(t) ≥ τM

{
Λ2(F−Jnf)(x+y)

(
t

10

)
,Λ(F−Jnf)(x−y)

(
t

10

)
,

Λ(F−Jnf)(y−x)

(
t

10

)
,Λ(Jnf−F )(2x)

(
t

10

)
,

Λ(Jnf−F )(2y)

(
t

10

)
,ΛDJnf(x,y)

(
t

2

)}
(3.3)

for all x, y ∈ X and n ∈ N. The first five terms on the right hand side
of the above inequality tend to 1 as n → ∞ by the definition of F .
Now consider that

ΛDJnf(x,y)

(
t

2

)
≥ τM

{
ΛDf(2nx,2ny)

2·4n

(
t

8

)
,ΛDf(−2nx,−2ny)

2·4n

(
t

8

)
,

ΛDf(2nx,2ny)
2·2n

(
t

8

)
,ΛDf(−2nx,−2ny)

2·2n

(
t

8

)}
≥ τM

{
ΛDf(2nx,2ny)

(
4nt

4

)
,ΛDf(−2nx,−2ny)

(
4nt

4

)
,

ΛDf(2nx,2ny)

(
2nt

4

)
,ΛDf(−2nx,−2ny)

(
2nt

4

)}
≥ τM

{
Λ′
φ(x,y)

(
4nt

4αn

)
,Λ′

φ(−x,−y)

(
4nt

4αn

)
,

Λ′
φ(x,y)

(
2nt

4αn

)
,Λ′

φ(−x,−y)

(
2nt

4αn

)}

which tends to 1 as n → ∞ by (RN3) and 2
α > 1 for all x, y ∈ X.

Therefore it follows from (3.3) that

ΛDF (x,y)(t) = 1

for each x, y ∈ X and t > 0. By (RN1), this means that DF (x, y) = 0
for all x, y ∈ X. Assume that α < 1 and Λ′

φ(x,y) is continuous in x, y.
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If m, a, b, c, d are any fixed integers with a, c ̸= 0, then we have

lim
n→∞

Λ′
φ((2na+b)x,(2nc+d)y)(t) ≥ lim

n→∞
Λ′
φ((a+ b

2n )x,(c+
d
2n )y)

(
t

αn

)
= lim

n→∞
Λ′
φ((a+ b

2n )x,(c+
d
2n )y)

(mt)

=Λ′
φ(ax,cy)(mt)

for all x, y ∈ X and t > 0. Since m is arbitrary, we have

lim
n→∞

Λ′
φ((2na+b)x,(2nc+d)y)(t) ≥ lim

m→∞
Λ′
φ(ax,cy)(mt) = 1

for all x, y ∈ X and t > 0. From these, we get the inequality

Λ2(f−F )(x)(5t) ≥ lim
n→∞

τM
{
Λ(Df−DF )((2n+1)x,−2nx)(t),

Λ(F−f)((2n+1+1)x)(t),Λ(F−f)(−(2n+1+1)x)(t),

Λ(f−F )((2n+1+2)x)(t),Λ(f−F )(−2n+1x)(t)
}

≥ lim
n→∞

τM
{
Λ′
φ((2n+1)x,−2nx)(t),M((2n+1 + 1)x, (2− α)t),

M((2n+1 + 2)x, (2− α)t),M
(
−2n+1x, (2− α)t

) }
=1

for all x ∈ X. From the above equality and the fact f(0) = 0 = F (0),
we obtain f ≡ F .

Case 2. We take α > 4 and suppose that φ satisfies the condition
(ii). Let the set (S, d) be as in the proof of Case 1. Now we consider
the mapping J : S → S defined by

Jg(x) := g
(x
2

)
− g

(
−x

2

)
+ 2

(
g
(x
2

)
+ g

(
−x

2

))
for all g ∈ S and x ∈ X. Notice that

Jng(x) = 2n−1
(
g
( x

2n

)
− g

(
− x

2n

))
+

4n

2

(
g
( x

2n

)
+ g

(
− x

2n

))
for all x ∈ X and n ∈ N. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary
constant with d(g, f) ≤ u. From the definition of d, (RN2), and (RN3),
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we have

ΛJg(x)−Jf(x)

(
4u

α
t

)
=Λ3(g( x

2 )−f( x
2 ))+g(− x

2 )−f(− x
2 )

(
4u

α
t

)
≥τM

{
Λ3(g( x

2 )−f( x
2 ))

(
3u

α
t),Λg(− x

2 )−f(− x
2 )

(u

α
t
)}

≥τM

{
Λg( x

2 )−f( x
2 )

(u

α
t
)
,Λg(− x

2 )−f(− x
2 )

(u

α
t
)}

≥τM

{
Λ′
φ( x

2 ,0)

(
t

α

)
,Λ′

φ(− x
2 ,0)

(
t

α

)}
≥M(x, t)

for all x ∈ X, which implies that

d(Jf, Jg) ≤ 4

α
d(f, g).

That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant 0 < 4

α < 1. Moreover, by (3.1), we see that

Λf(x)−Jf(x)

(
t

α

)
= ΛDf( x

2 ,0)

(
t

α

)
≥ Λ′

φ( x
2 ,0)

(
t

α

)
≥ Λ′

φ(x,0)(t)

for all x ∈ X. It means that d(f, Jf) ≤ 1
α < ∞ by the definition of d.

Therefore according to Theorem 3.1, the sequence {Jnf} converges to
the unique fixed point F : X → Y of J in the set T = {g ∈ S|d(f, g) <
∞}, which is represented by

F (x) := lim
n→∞

(
2n−1

(
f
( x

2n

)
− f

(
− x

2n

))
+

4n

2

(
f
( x

2n

)
+ f

(
− x

2n

)))
for all x ∈ X. Since

d(f, F ) ≤ 1

1− 4
α

d(f, Jf) ≤ 1

α− 4

the inequality (3.2) holds. Next we will show that F is quadratic-
additive. Let x, y ∈ X. Then by (RN3) we have the inequality (3.3)
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for all x, y ∈ X and n ∈ N. The first five terms on the right hand side
of the inequality (3.3) tend to 1 as n → ∞ by the definition of F . Now
consider that

ΛDJnf(x,y)

(
t

2

)
≥τM

{
Λ22n−1Df( x

2n , y
2n )

(
t

8

)
,Λ22n−1Df(−x

2n ,−y
2n )

(
t

8

)
,

Λ2n−1Df( x
2n , y

2n )

(
t

8

)
,Λ−2n−1Df(−x

2n ,−y
2n )

(
t

8

)}
≥τM

{
Λ′
φ(x,y)

(
αnt

4n+1

)
,Λ′

φ(−x,−y)

(
αnt

4n+1

)
,

Λ′
φ(x,y)

(
αnt

2n+2

)
,Λ′

φ(−x,−y)

(
αnt

2n+2

)}
which tends to 1 as n → ∞ by (RN3) for all x, y ∈ X. Therefore it
follows from (3.3) that

ΛDF (x,y)(t) = 1

for each x, y ∈ X and t > 0. By (RN1), this means that DF (x, y) = 0
for all x, y ∈ X. It completes the proof of Theorem 3.2. �

Now we have a generalized Hyers-Ulam stability of the quadratic-
additive functional equation (1.2) in the framework of normed spaces.
Let Λx(t) = t

t+∥x∥ . Then (X,Λ, τM ) is an induced random normed

space, which leads us to get the following result.

Corollary 3.3. Let X be a linear space, Y be a complete normed-
space and f : X → Y be a mapping with f(0) = 0 for which there is
φ : X2 → [0,∞) such that

∥Df(x, y)∥ ≤ φ(x, y)

for all x, y ∈ X. If for all x, y ∈ X φ satisfies one of the following
conditions:

(i) αφ(x, y) ≥ φ(2x, 2y) for some 0 < α < 2,
(ii) φ(2x, 2y) ≥ αφ(x, y) for some 4 < α

then there exists a unique quadratic-additive mapping F : X → Y
such that

∥f(x)− F (x)∥ ≤

{ Φ(x)
2−α if φ satisfies (i),

Φ(x)
α−4 if φ satisfies (ii)
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for all x ∈ X, where Φ(x) is defined by

Φ(x) = max(φ(x, 0), φ(−x, 0)).

Moreover, if 0 < α < 1 under the condition (i), then f is a quadratic-
additive mapping.

Now we have Hyers-Ulam-Rassias stability results of the quadratic-
additive type functional equation (1.2).

Corollary 3.4. Let X be a normed space, p ∈ R+\[1, 2] and Y a
complete normed-space. If f : X → Y is a mapping such that

∥Df(x, y)∥ ≤ ∥x∥p + ∥y∥p

for all x, y ∈ X with f(0) = 0, then there exists a unique quadratic-
additive mapping F : X → Y such that

∥f(x)− F (x)∥ ≤

{ ∥x∥p

2−2p if 0 ≤ p < 1,

∥x∥p

2p−4 if p > 2

for all x ∈ X.

Proof. If we denote by φ(x, y) = ∥x∥p + ∥y∥p, then the induced
random normed space (X,Λx, τM ) holds the conditions of Theorem
3.3 with α = 2p. �

Corollary 3.5. Let X be a normed space and Y a Banach space.
Suppose that the mapping f : X → Y satisfies the inequality

∥Df(x, y)∥ ≤ θ∥x∥p∥y∥q

for all x, y ∈ X, where θ ≥ 0, p, q > 0 and p+ q ∈ (0, 1)∪ (2,∞). Then
f is itself a quadratic additive mapping.

Proof. It follows from Theorem 3.2, by putting

φ(x, y) := θ∥x∥p∥y∥q

for all x, y ∈ X and α = 2p+q. �
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