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ADDITIVE-QUARTIC FUNCTIONAL EQUATION IN

NON-ARCHIMEDEAN ORTHOGONALITY SPACES

Hyunju Lee∗, Seon Woo Kim, Bum Joon Son, Dong Hwan
Lee and Seung Yeon Kang

Abstract. Using the direct method, we prove the Hyers-Ulam sta-
bility of the orthogonally additive-quartic functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y)

+ 10f(x) + 14f(−x)− 3f(y)− 3f(−y)(0.1)

for all x, y with x ⊥ y, in non-Archimedean Banach spaces. Here ⊥
is the orthogonality in the sense of Rätz.

1. Introduction and preliminaries

In 1897, Hensel [15] introduced a normed space which does not have
the Archimedean property. It turned out that non-Archimedean spaces
have many nice applications (see [9, 20, 21, 27]).

A valuation is a function | · | from a field K into [0,∞) such that
0 is the unique element having the 0 valuation, |rs| = |r| · |s| and the
triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.

A field K is called a valued field if K carries a valuation. Throughout
this paper, we assume that the base field is a valued field, hence call it
simply a field. The usual absolute values of R and C are examples of
valuations.
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Let us consider a valuation which satisfies a stronger condition than
the triangle inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,

then the function | · | is called a non-Archimedean valuation, and the
field is called a non-Archimedean field. Clearly |1| = | − 1| = 1 and
|n| ≤ 1 for all n ∈ N. A trivial example of a non-Archimedean valuation
is the function | · | taking everything except for 0 into 1 and |0| = 0.

Definition 1.1. ([26]) Let X be a vector space over a field K with a
non-Archimedean valuation | · |. A function ∥ · ∥ : X → [0,∞) is said
to be a non-Archimedean norm if it satisfies the following conditions:

(i) ∥x∥ = 0 if and only if x = 0;
(ii) ∥rx∥ = |r|∥x∥ (r ∈ K,x ∈ X);
(iii) the strong triangle inequality

∥x+ y∥ ≤ max{∥x∥, ∥y∥}, ∀x, y ∈ X

holds. Then (X, ∥ · ∥) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean
normed space X. Then the sequence {xn} is called Cauchy if for a given
ε > 0 there is a positive integer N such that

∥xn − xm∥ ≤ ε

for all n,m ≥ N .
(ii) Let {xn} be a sequence in a non-Archimedean normed space X.

Then the sequence {xn} is called convergent if for a given ε > 0 there
are a positive integer N and an x ∈ X such that

∥xn − x∥ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and
denote by limn→∞ xn = x.

(iii) If every Cauchy sequence inX converges, then the non-Archimedean
normed space X is called a non-Archimedean Banach space.

Assume that X is a real inner product space and f : X → R is
a solution of the orthogonal Cauchy functional equation f(x + y) =
f(x) + f(y), ⟨x, y⟩ = 0. By the Pythagorean theorem f(x) = ∥x∥2 is a
solution of the Cauchy functional equation. Of course, this function does
not satisfy the additivity equation everywhere. Thus orthogonal Cauchy
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functional equation is not equivalent to the classic Cauchy functional
equation on the whole inner product space.

G. Pinsker [30] characterized orthogonally additive functionals on an
inner product space when the orthogonality is the ordinary one in such
spaces. K. Sundaresan [39] generalized this result to arbitrary Banach
spaces equipped with the Birkhoff-James orthogonality. The orthogonal
Cauchy functional equation

f(x+ y) = f(x) + f(y), x ⊥ y,

in which ⊥ is an abstract orthogonality relation, was first investigated by
S. Gudder and D. Strawther [14]. They defined ⊥ by a system consisting
of five axioms and described the general semi-continuous real-valued
solution of conditional Cauchy functional equation. In 1985, J. Rätz [36]
introduced a new definition of orthogonality by using more restrictive
axioms than of S. Gudder and D. Strawther. Moreover, he investigated
the structure of orthogonally additive mappings. J. Rätz and Gy. Szabó
[37] investigated the problem in a rather more general framework.

Let us recall the orthogonality in the sense of J. Rätz ; cf. [36].

Suppose X is a real vector space with dimX ≥ 2 and ⊥ is a binary
relation on X with the following properties:
(O1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X − {0}, x ⊥ y, then x, y are linearly
independent;
(O3) homogeneity: if x, y ∈ X, x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
(O4) the Thalesian property: if P is a 2-dimensional subspace of X, x ∈
P and λ ∈ R+, which is the set of nonnegative real numbers, then there
exists y0 ∈ P such that x ⊥ y0 and x+ y0 ⊥ λx− y0.

The pair (X,⊥) is called an orthogonality space. By an orthogo-
nality normed space we mean an orthogonality space having a normed
structure.

Some interesting examples are
(i) The trivial orthogonality on a vector space X defined by (O1), and
for non-zero elements x, y ∈ X, x ⊥ y if and only if x, y are linearly
independent.
(ii) The ordinary orthogonality on an inner product space (X, ⟨., .⟩) given
by x ⊥ y if and only if ⟨x, y⟩ = 0.
(iii) The Birkhoff-James orthogonality on a normed space (X, ∥.∥) de-
fined by x ⊥ y if and only if ∥x+ λy∥ ≥ ∥x∥ for all λ ∈ R.
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The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for
all x, y ∈ X. Clearly examples (i) and (ii) are symmetric but exam-
ple (iii) is not. It is remarkable to note, however, that a real normed
space of dimension greater than 2 is an inner product space if and only
if the Birkhoff-James orthogonality is symmetric. There are several
orthogonality notions on a real normed space such as Birkhoff-James,
Boussouis, Singer, Carlsson, unitary-Boussouis, Roberts, Pythagorean,
isosceles and Diminnie (see [1]–[4], [10, 18]).

The stability problem of functional equations originated from the fol-
lowing question of Ulam [41]: Under what condition does there exist an
additive mapping near an approximately additive mapping? In 1941, Hy-
ers [16] gave a partial affirmative answer to the question of Ulam in the
context of Banach spaces. In 1978, Th.M. Rassias [31] extended the
theorem of Hyers by considering the unbounded Cauchy difference.

In [22], Lee et al. considered the following quartic functional equation

(1.1) f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y).

It is easy to show that the function f(x) = x4 satisfies the functional
equation (1.1), which is called a quartic functional equation and every
solution of the quartic functional equation is said to be a quartic map-
ping.

R. Ger and J. Sikorska [13] investigated the orthogonal stability of the
Cauchy functional equation f(x+y) = f(x)+f(y), namely, they showed
that if f is a mapping from an orthogonality space X into a real Banach
space Y and ∥f(x+y)−f(x)−f(y)∥ ≤ ε for all x, y ∈ X with x ⊥ y and
some ε > 0, then there exists exactly one orthogonally additive mapping
g : X → Y such that ∥f(x)− g(x)∥ ≤ 16

3
ε for all x ∈ X.

The first author treating the stability of the quadratic equation was
F. Skof [38] by proving that if f is a mapping from a normed space
X into a Banach space Y satisfying ∥f(x + y) + f(x − y) − 2f(x) −
2f(y)∥ ≤ ε for some ε > 0, then there is a unique quadratic mapping
g : X → Y such that ∥f(x) − g(x)∥ ≤ ε

2
. P.W. Cholewa [5] extended

the Skof’s theorem by replacing X by an abelian group G. The Skof’s
result was later generalized by S. Czerwik [6] in the spirit of Hyers-Ulam-
Rassias. During the last decades several stability problems of functional
equations have been investigated in the spirit of Hyers-Ulam-Rassias (see
[7, 8, 17, 19, 29], [32]–[35]).
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The orthogonally quadratic equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), x ⊥ y

was first investigated by F. Vajzović [42] when X is a Hilbert space,
Y is the scalar field, f is continuous and ⊥ means the Hilbert space
orthogonality. Later, H. Drljević [11], M. Fochi [12], M.S. Moslehian
[23, 24] and Gy. Szabó [40] generalized this result. See also [25, 28].

This paper is organized as follows: In Section 2, we prove the Hyers-
Ulam stability of the orthogonally additive-quartic functional equation
(0.1) in non-Archimedean orthogonality spaces for an odd mapping.

In Section 3, we prove the Hyers-Ulam stability of the orthogonally
additive-quartic functional equation (0.1) in non-Archimedean orthogo-
nality spaces for an even mapping.

Throughout this paper, assume that (X,⊥) is a non-Archimedean
orthogonality space and that (Y, ∥ ·∥) is a real non-Archimedean Banach
space. Assume that |2| ≠ 1.

2. Stability of the orthogonally additive-quartic functional
equation: an odd mapping case

In this section, we deal with the stability problem for the orthogonally
additive-quartic functional equation

Df(x, y) : = f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)

− 10f(x)− 14f(−x) + 3f(y) + 3f(−y) = 0

for all x, y ∈ X with x ⊥ y in non-Archimedean Banach spaces: an odd
mapping case.

Definition 2.1. An odd mapping f : X → Y is called an orthogo-
nally additive mapping if

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y)− 4f(x)

for all x, y ∈ X with x ⊥ y.

Theorem 2.2. Let φ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
i=0

1

|2|i
φ(2ix, 2iy) < +∞
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for all x, y ∈ X with x ⊥ y. Let f : X → Y be an odd mapping
satisfying

∥Df(x, y)∥ ≤ φ(x, y)(2.1)

for all x, y ∈ X with x ⊥ y. Then there exists a unique orthogonally
additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ 1

|2|2
Φ(x, 0)(2.2)

for all x ∈ X.

Proof. Putting y = 0 in (2.1), we get

∥2f (2x)− 4f(x)∥ ≤ φ(x, 0)(2.3)

for all x ∈ X, since x ⊥ 0. So∥∥∥∥12f(2x)− f(x)

∥∥∥∥ ≤ 1

|2|2
φ(x, 0)

for all x ∈ X. Replacing x by 2nx in (2.3), we get∥∥∥∥12f(2n+1x)− f(2nx)

∥∥∥∥ ≤ 1

|2|2
φ(2nx, 0)

for all n ≥ 0 and all x ∈ X, since 2nx ⊥ 0. So∥∥∥∥ 1

2n+1
f(2n+1x)− 1

2n
f(2nx)

∥∥∥∥ ≤ 1

|2|n+2
φ(2nx, 0)

for all n ≥ 0 and all x ∈ X.

Now we define a mapping g such that

g(n, x) :=
1

2n+1
f(2n+1x)− 1

2n
f(2nx)

for all n ≥ 0 and all x ∈ X. Then

∥g(n, x)∥ ≤ 1

|2|n+2
φ(2nx, 0)
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for all n ≥ 0 and all x ∈ X. So∥∥∥∥ 1

2m
f(2mx)− 1

2n
f(2nx)

∥∥∥∥ =

∥∥∥∥∥
m−1∑
i=n

g(i, x)

∥∥∥∥∥
≤ max {∥g(n, x)∥ , · · · , ∥g(m− 1, x)∥}

≤
m−1∑
i=n

∥g(i, x)∥(2.4)

≤
m−1∑
i=n

1

|2|i+2
φ(2ix, 0),

which tends to zero as n → ∞, for all m > n ≥ 0 and all x ∈ X.
Thus the sequence

{
1
2n
f(2nx)

}
is a Cauchy sequence. Since Y is a non-

Archimedean Banach space, The sequence
{

1
2n
f(2nx)

}
converges. So we

can define a mapping A : X → Y such that

lim
n→∞

1

2n
f(2nx) = A(x)

for all x ∈ X.
Replacing x, y by 2nx, 2ny in (2.1), respectively, we get

∥Df(2nx, 2ny)∥ ≤ φ(2nx, 2ny)

for all x, y ∈ X with x ⊥ y, since 2nx ⊥ 2ny. Then∥∥∥∥ 1

2n
Df(2nx, 2ny)

∥∥∥∥ ≤ 1

|2|n
φ(2nx, 2ny)

for all x, y ∈ X with x ⊥ y. So

∥DA(x, y)∥ = lim
n→∞

∥∥∥∥ 1

2n
Df(2nx, 2ny)

∥∥∥∥ ≤ lim
n→∞

1

|2|n
φ(2nx, 2ny) = 0

for all x, y ∈ X with x ⊥ y. Thus

DA(x, y) = 0

for all x, y ∈ X with x ⊥ y.
Since f(x) is an odd mapping, A(x) is an odd mapping. So the

mapping A : X → Y is an orthogonally additive mapping.
Letting n = 0 and m → ∞ in (2.4), we get the inequality (2.2).
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To prove the uniqueness of A, let L : X → Y be another orthogonally
additive mapping satisfying (2.2).

∥A(x)− L(x)∥

≤
∥∥∥∥ 1

2n
A(2nx)− 1

2n
L(2nx)

∥∥∥∥
≤ max

{∥∥∥∥ 1

2n
A(2nx)− 1

2n
f(2nx)

∥∥∥∥ , ∥∥∥∥ 1

2n
f(2nx)− 1

2n
L(2nx)

∥∥∥∥}
≤ 1

|2|n+2
Φ(2nx, 0),

which tends to zero as n → ∞. So A : X → Y is unique.
Therefore, there exists a unique orthogonally additive mapping A :

X → Y satisfying (2.2). This completes the proof.

Corollary 2.3. Let p > 1. Let f : X → Y be an odd mapping
satisfying

∥Df(x, y)∥ ≤ θ(∥x∥p + ∥y∥p)(2.5)

for all x, y ∈ X with x ⊥ y. Then there exists a unique orthogonally
additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ θ

|2|(|2| − |2|p)
∥x∥p

for all x ∈ X.

Theorem 2.4. Let φ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
i=1

|2|iφ
( x

2i
,
y

2i

)
< +∞

for all x, y ∈ X with x ⊥ y. Let f : X → Y be an odd mapping satisfying
(2.1). Then there exists a unique orthogonally additive mapping A :
X → Y such that

∥f(x)− A(x)∥ ≤ 1

|2|2
Φ(x, 0)

for all x ∈ X.

Proof. It follows from (2.3) that∥∥∥f(x)− 2f
(x
2

)∥∥∥ ≤ 1

|2|
φ
(x
2
, 0
)
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for all x ∈ X, since x ⊥ 0.
The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.5. Let 0 < p < 1. Let f : X → Y be an odd map-
ping satisfying (2.5). Then there exists a unique orthogonally additive
mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ θ

|2|(|2|p − |2|)
∥x∥p

for all x ∈ X.

3. Stability of the orthogonally additive-quartic functional
equation: an even mapping case

In this section, we deal with the stability problem for the orthogonally
additive-quartic functional equation Df(x, y) = 0 given in the previous
section: an even mapping case.

Definition 3.1. An even mapping f : X → Y is called an orthogo-
nally quartic mapping if

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y)

for all x, y ∈ X with x ⊥ y.

Theorem 3.2. Let φ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑
i=0

1

|2|4i
φ(2ix, 2iy) < +∞

for all x, y ∈ X with x ⊥ y. Let f : X → Y be an even mapping
satisfying f(0) = 0 and (2.1). Then there exists a unique orthogonally
quartic mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 1

|2|5
Ψ(x, 0)

for all x ∈ X.

Proof. Putting y = 0 in (2.1), we get

∥2f (2x)− 32f(x)∥ ≤ φ(x, 0)
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for all x ∈ X, since x ⊥ 0. So∥∥∥∥ 1

16
f(2x)− f(x)

∥∥∥∥ ≤ 1

|2|5
φ(x, 0)(3.1)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 3.3. Let p > 4. Let f : X → Y be an even mapping
satisfying f(0) = 0 and (2.5). Then there exists a unique orthogonally
quartic mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ θ

|2|(|2|4 − |2|p)
∥x∥p

for all x ∈ X.

Theorem 3.4. Let φ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑
i=1

|2|4iφ
( x

2i
,
y

2i

)
< +∞

for all x, y ∈ X with x ⊥ y. Let f : X → Y be an even mapping
satisfying f(0) = 0 and (2.1). Then there exists a unique orthogonally
quartic mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 1

|2|5
Ψ(x, 0)

for all x ∈ X.

Proof. It follows from (3.1) that∥∥∥f(x)− 16f
(x
2

)∥∥∥ ≤ 1

|2|
φ
(x
2
, 0
)

for all x ∈ X, since x ⊥ 0.
The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 3.5. Let 0 < p < 4. Let f : X → Y be an even mapping
satisfying f(0) = 0 and (2.5). Then there exists a unique orthogonally
quartic mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ θ

|2|(|2|p − |2|4)
∥x∥p

for all x ∈ X.
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Let fo(x) = f(x)−f(−x)
2

and fe(x) = f(x)+f(−x)
2

. Then fo is an odd
mapping and fe is an even mapping such that f = fo + fe.

The above corollaries can be summarized as follows:

Theorem 3.6. Let p > 4. Let f : X → Y be a mapping satisfying
f(0) = 0 and (2.5). Then there exist an orthogonally additive mapping
A : X → Y and an orthogonally quartic mapping Q : X → Y such that

∥f(x)− A(x)−Q(x)∥ ≤
(

1

|2|(|2| − |2|p)
+

1

|2|(|2|4 − |2|p)

)
θ∥x∥p

for all x ∈ X.

Theorem 3.7. Let 0 < p < 1. Let f : X → Y be a mapping
satisfying f(0) = 0 and (2.5). Then there exist an orthogonally additive
mapping A : X → Y and an orthogonally quartic mapping Q : X → Y
such that

∥f(x)− A(x)−Q(x)∥ ≤
(

1

|2|(|2|p − |2|)
+

1

|2|(|2|p − |2|4)

)
θ∥x∥p

for all x ∈ X.
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