DOI QR코드

DOI QR Code

FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES

  • Received : 2012.01.05
  • Accepted : 2012.03.05
  • Published : 2012.03.30

Abstract

Using fixed point method, we prove the Hyers-Ulam stability of the orthogonally additive functional equation (0.1) $f(2x+y)=2f(x)+f(y)$ and of the orthogonally quadratic functional equation (0.2) $2f(\frac{x}{2}+y)+2f(\frac{x}{2}-y)=f(x)+4f(y)$ for all $x$, $y$ with $x{\perp}y$ in orthogonality spaces.

Keywords

References

  1. J. Alonso and C. Benitez, Orthogonality in normed linear spaces: a survey I. Main properties, Extracta Math. 3 (1988), 1-15.
  2. J. Alonso and C. Benitez, Orthogonality in normed linear spaces: a survey II. Relations between main orthogonalities, Extracta Math. 4 (1989), 121-131.
  3. G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172. https://doi.org/10.1215/S0012-7094-35-00115-6
  4. L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure & Appl. Math. 4 (1), Art. ID 4 (2003).
  5. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.
  6. L. Cadariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl. 2008, Art. ID 749392 (2008).
  7. S.O. Carlsson, Orthogonality in normed linear spaces, Ark. Mat. 4 (1962),297- 318. https://doi.org/10.1007/BF02591506
  8. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86. https://doi.org/10.1007/BF02192660
  9. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
  10. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002.
  11. S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003.
  12. J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  13. C.R. Diminnie, A new orthogonality relation for normed linear spaces, Math. Nachr. 114 (1983), 197-203. https://doi.org/10.1002/mana.19831140115
  14. F. Drljevic, On a functional which is quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd) 54 (1986), 63-71.
  15. M. Fochi, Functional equations in A-orthogonal vectors, Aequationes Math. 38 (1989), 28-40. https://doi.org/10.1007/BF01839491
  16. R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Pol. Acad. Sci. Math. 43 (1995), 143-151.
  17. S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math. 58 (1975), 427-436. https://doi.org/10.2140/pjm.1975.58.427
  18. D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  19. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
  20. G. Isac and Th.M. Rassias, Stability of $\psi$-additive mappings: Appications to nonlinear analysis, Internat. J. Math. & Math. Sci. 19 (1996), 219-228. https://doi.org/10.1155/S0161171296000324
  21. R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292. https://doi.org/10.1090/S0002-9947-1947-0021241-4
  22. S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Florida, 2001.
  23. Y. Jung and I. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl. 306 (2005), 752-760. https://doi.org/10.1016/j.jmaa.2004.10.017
  24. D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100
  25. M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. 37 (2006), 361-376. https://doi.org/10.1007/s00574-006-0016-z
  26. M.S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Difference Equ. Appl. 11 (2005), 999-1004. https://doi.org/10.1080/10236190500273226
  27. M.S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl. 318, (2006), 211-223. https://doi.org/10.1016/j.jmaa.2005.05.052
  28. M.S. Moslehian and Th.M. Rassias, Orthogonal stability of additive type equations, Aequationes Math. 73 (2007), 249-259. https://doi.org/10.1007/s00010-006-2868-0
  29. L. Paganoni and J. Ratz, Conditional function equations and orthogonal additivity, Aequationes Math. 50 (1995), 135-142. https://doi.org/10.1007/BF01831116
  30. C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory Appl. 2007, Art. ID 50175 (2007).
  31. C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory Appl. 2008, Art. ID 493751 (2008).
  32. C. Park and J. Park, Generalized Hyers-Ulam stability of an Euler-Lagrange type additive mapping, J. Difference Equ. Appl. 12 (2006), 1277-1288. https://doi.org/10.1080/10236190600986925
  33. A.G. Pinsker, Sur une fonctionnelle dans l'espace de Hilbert, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 20 (1938), 411-414.
  34. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
  35. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  36. Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Stud. Univ. Babes-Bolyai Math. 43 (1998), 89-124.
  37. Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378. https://doi.org/10.1006/jmaa.2000.6788
  38. Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284. https://doi.org/10.1006/jmaa.2000.7046
  39. Th.M. Rassias (ed.), Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
  40. J. Ratz, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35- 49. https://doi.org/10.1007/BF02189390
  41. J. Ratz and Gy. Szabo, On orthogonally additive mappings IV, Aequationes Math. 38 (1989), 73-85. https://doi.org/10.1007/BF01839496
  42. F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
  43. K. Sundaresan, Orthogonality and nonlinear functionals on Banach spaces, Proc. Amer. Math. Soc. 34 (1972), 187-190. https://doi.org/10.1090/S0002-9939-1972-0291835-X
  44. Gy. Szabo, Sesquilinear-orthogonally quadratic mappings, Aequationes Math. 40 (1990), 190-200. https://doi.org/10.1007/BF02112295
  45. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.
  46. F. Vajzovic, Uber das Funktional H mit der Eigenschaft: (x, y) = 0 $\Rightarrow$ H(x + y) + H(x - y) = 2H(x) + 2H(y), Glasnik Mat. Ser. III 2 (22) (1967), 73-81.