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ELLIPTIC PROBLEM WITH A VARIABLE

COEFFICIENT AND A JUMPING SEMILINEAR TERM

Q-Heung Choi and Tacksun Jung∗

Abstract. We obtain the multiple solutions for the fourth order
elliptic problem with a variable coefficient and a jumping semilinear
term. We have a result that there exist at least two solutions if the
variable coefficient of the semilinear term crosses some number of the
eigenvalues of the biharmonic eigenvalue problem. We obtain this
multiplicity result by applying the Leray-Schauder degree theory.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
c ∈ R and b(x) be Hölder continuous in Ω. In this paper we consider the
multiplicity result for the following fourth order elliptic equation with
the variable coefficient semilinear term and Dirichlet boundary condition

∆2u+ c∆u = b(x)((u+ 1)+ − 1), in Ω,(1.1)

u = 0, ∆u = 0 on ∂Ω,

where u+ = max{u, 0} and u− = −min{u, 0}. Let λk, k ≥ 1, denote the
eigenvalues and ϕk k ≥ 1 the corresponding eigenfunctions, suitably nor-
malized with respect to L2(Ω) inner product, of the eigenvalue problem
∆u+λu = 0 in Ω, u = 0 on ∂Ω, where each eigenvalue λk is repeated as
often as its multiplicity. We recall that λ1 < λ2 ≤ λ3 . . . λn . . . → +∞,
and that ϕ1(x) > 0 for x ∈ Ω. The eigenvalue problem ∆2u+ c∆u = µu
in Ω, u = 0, ∆u = 0 on ∂Ω has also infinitely many eigenvalues
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µk = λk(λk − c), k ≥ 1 and corresponding eigenfunctions ϕk, k ≥ 1.
We note that

λ1(λ1 − c) < λ2(λ2 − c) ≤ λ3(λ3 − c) < · · · .
Tarantello [9] studied problem (1.1) with b(x) = b constant;

∆2u+ c∆u = b((u+ 1)+ − 1),(1.2)

u = 0, ∆u = 0 on ∂Ω.

She showed that if c < λ1 and b ≥ λ1(λ1− c), then (1.2) has at least two
solutions, one of which is a negative solution. She obtained this result
by the degree theory. Micheletti, Pistoia and Saccon [8] also proved that
if c < λ1 and b ≥ λ2(λ2 − c), then (1.2) has at least three solutions by
the variational linking theorem and Leray-Schauder degree theory. Choi
and Jung [2] showed that the problem

∆2u+ c∆u = bu+ + s in Ω,(1.3)

u = 0, ∆u = 0 on ∂Ω

has at least two nontrivial solutions when c < λ1, λ1(λ1 − c) < b <
λ2(λ2 − c) and s < 0 or when λ1 < c < λ2, b < λ1(λ1 − c) and s > 0.
They obtained these results by using the variational reduction method.
They [3] also proved that when c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c) and
s < 0, (1.3) has at least three nontrivial solutions by using degree theory.
They [4] also proved that the single fourth order elliptic problem with
some nonlinearity has at least three solutions. In [4,5,6,9] the authors
investigate the existence of multiple solutions of fourth order elliptic
problems.

In this paper we improve these results to the problem (1.1) with the
variable coefficient jumping semilinear term b(x). Now we consider the
eigenvalue problem

∆2u+ c∆u− b(x)u = Λu in Ω,(1.4)

u = 0, ∆u = 0 on ∂Ω.

McKenna and Walter [7] showed that (1.4) has infinitely many eigen-
values Λk, k ≥ 1, and the corresponding eigenfunctions ψk, k ≥ 1. We
assume that the eigenfunctions are normalized with respect to H inner
product (the space H is introduced in section 2). Standard eigenvalue
theory gives that

Λ1 < Λ2 ≤ Λ3 ≤ · · · , Λk → +∞ as k → +∞,
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ψ1(x) > 0 in Ω.

Our main results are as follows:

Theorem 1.1. Let c < λ1, λn(λn − c) < b(x) < λn+1(λn+1 − c),
n ≥ 1. Then (1.1) has at least two nontrivial solutions, one of which is
a negative solution.

We use the Leray-Schauder degree theory to prove main results. The
outline of the proofs is as follows: In section 2, we show the existence of
the negative solution and investigate the a priori bound for the solutions
of (1.1) under the assumptions of Theorem 1.1 and prove Theorem 1.1.

2. The Hilbert space and proof of Theorem 1.1

Any element u in L2(Ω) can be written as

(2.1) u =
∑

hkψk with
∑

h2k <∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|Λk|h2k <∞}.

Then this is a complete normed space with a norm

(2.2) ∥u∥ = [
∑

|Λk|h2k]
1
2 .

Since Λk → +∞ and c is fixed, we have
(i) (∆2 + c∆− b(x))u ∈ H implies u ∈ H.
(ii) ∥u∥ ≥ C∥u∥L2(Ω), for some C > 0.
(iii) ∥u∥L2(Ω) = 0 if and only if ∥u∥ = 0.
For the proof of the above results we refer [1].

Lemma 2.1. Assume that c is not an eigenvalue of −∆, Λk ̸= 0 (or
b(x) ̸= λk(λk − c)), and b(x) is bounded. Then all solutions in L2(Ω) of

∆2u+ c∆u = b(x)((u+ 1)+ − 1) in L2(Ω)

belong to H.

Proof. (1.1) can be rewritten as

(∆2 + c∆− b(x))u = b(x)(u+ 1)− in Ω,(2.3)

u = 0, ∆u = 0, on ∂Ω
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Let us write b(x)(u+ 1)− =
∑
hkψk ∈ L2(Ω).

(∆2 + c∆− b(x))−1b(x)(u+ 1)− =
∑ 1

Λk

hkψk ∈ L2(Ω).

|(∆2 + c∆− b(x))−1b(x)(u+ 1)−∥ =
∑

|Λk|
1

(Λk)2
h2k

≤ C
∑

h2k = C∥u∥2L2(Ω) <∞

for some C > 0. Thus (∆2 + c∆− b(x))−1b(x)(u+ 1)− ∈ H.

With the aid of Lemma 2.1 it is enough to show that we investigate
the existence of the solutions of (1.1) in the subspace H of L2(Ω).

Now we shall calculate the Leray-Schauder degree on the neighbor-
hood of a unique negative solution u∗ of the linear problem

∆2u+ c∆u = −b(x), in Ω,(2.4)

u = 0, ∆u = 0 on ∂Ω

Lemma 2.2. Assume that c < λ1, λn(λn−c) < b(x) < λn+1(λn+1−c),
n ≥ 1. Then there exists a constant η > 0 such that the Leray-Schauder
degree

dLS(u− (∆2 + c∆)−1(b(x)((u+ 1)+ − 1)), Bη(u
∗), 0) = (−1)n.

Proof. We know that the linear problem (2.4) has a unique solution u∗.
Since c < λ1 and −b(x) < 0, by applying the standard strong maximum
principle to z = ∆u and consequently to u, u∗ is negative. Let u be a
nontrivial solution of (1.1). Since b(x)((u + 1)+ − 1) ≥ −b(x), by the
standard strong maximum principle to z = ∆u and consequently to u,
we have u > u∗. Since min{(u+ 1)+ − 1} = −1 and b(x) > λ1(λ1 − c),

(2.5) min
Ω
u < −1,

so

(2.6) ∥u∥L∞ > 1.

By the Schauder estimates for elliptic operator, (∆2 + c∆)−1 is a linear
compact operator from H into H. We note that if u ∈ H, (u+1)+−1 ∈
H. Thus the operator u− (∆2+c∆)−1(b(x)((u+1)+−1)) is well defined
from H into H. (1.1) can be rewritten as

(∆2 + c∆− b(x))u = b(x)(u+ 1)−.
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or

(2.7) u = (∆2 + c∆− b(x))−1(b(x)(u+ 1)−).

Let K be the closure of (∆2 + c∆ − b(x))−1(B̄), where B̄ is the closed
unit ball centered at u∗ in L2(Ω). Let u be a nontrivial solution of (1.1).
Let u = u∗ + v and ∥v∥ = η. Then v satisfies the equation

(2.8) (∆2 + c∆− b(x))v = b(x)(u∗ + v + 1)− + b(x)u∗ + b(x)

or

(2.9) v = (∆2 + c∆− b(x))−1(b(x)(u∗ + v + 1)− + b(x)u∗ + b(x)).

Let us set β = max b(x). Since ∥(u∗ + v + 1)−∥ < ∥(u∗ + v)−∥ and

∥b(x)(u∗ + v + 1)− + b(x)u∗ + b(x)∥ ≤ ∥b(x)(u∗ + v)− + b(x)u∗ + b(x)∥
≤ β(η + 2∥u∗∥+ 1).

Thus

v ∈ β(η + 1)K.

From (2.9) we get

v + (∆2 + c∆− b(x))−1(−b(x)u∗ − b(x))(2.10)

= (∆2 + c∆− b(x))−1(b(x)(u∗ + v + 1)−).

Let us set y = v
η
. Then ∥y∥ = 1 and y ∈ β(1 + 1

η
)K. Since y is in

compact set and different from 0 and since b(x) > 0 is not eigenvalue,
we can choose a number η > 0 so small that

infy∥y +
1

η
(∆2 + c∆− b(x))−1(−b(x)− b(x)u∗)∥

≥ infy∥y +
1

η
(∆2 + c∆− b(x))−1(−b(x))∥ = a > 0

since (∆2 + c∆)−1(−b(x) − b(x)u∗) > (∆2 + c∆)−1(−b(x)) and ∥(∆2 +
c∆ − b(x))−1(−b(x))∥ = β

min{b(x)−λn(λn−c),λn+1(λn+1−c)−b(x)} > 1. Hence

the norm of the left hand side of (2.10) is

∥v + (∆2 + c∆− b(x))−1(−b(x)− b(x)u∗)∥ > aη.

On the other hand, we shall estimate the norm of the right hand side
of (2.10). If v is a solution of (2.8), then by ∥(∆2 + c∆ − b(x))−1∥ =



130 Q-Heung Choi and Tacksun Jung

1
min{b(x)−λn(λn−c),λn+1(λn+1−c)−b(x)} , the norm of the right hand side of (2.10)

is

∥(∆2 + c∆− b(x))−1(b(x)(u∗ + v + 1)−)∥

≤ β

min{b(x)− λn(λn − c), λn+1(λn+1 − c)− b(x)}
η.

We note that β
min{b(x)−λn(λn−c),λn+1(λn+1−c)−b(x)} > 1. Now we choose η > 0

so small that β
min{b(x)−λn(λn−c),λn+1(λn+1−c)−b(x)}η < aη. Thus for this value

of η, there is no solution of (1.1) of the form u = u∗ + v with ∥v∥ = η.
That is,

u− (∆2 + c∆)−1(b(x)(u+ 1)+ − b(x)) ̸= 0 on ∂Bη(u
∗).

We apply the similar argument to the equation

(∆2 + c∆− b(x))u(2.11)

= λb(x)(u+ 1)− + λb(x)u∗ + λb(x)− b(x)− b(x)u∗ in H,

where 0 ≤ λ ≤ 1 and u∗ is the unique negative solution of (2.4). λ = 1
gives the equation (1.1). Let u be a nontrivial solution of (2.11) for
arbitrary λ with 0 ≤ λ ≤ 1. Let u = u∗ + v. Then v satisfies the
equation

(2.12) (∆2 + c∆− b(x))(v) = λb(x)(u∗ + v + 1)− + λb(x)u∗ + λb(x)

or

(2.13) v = (∆2 + c∆− b(x))−1(λb(x)(u∗ + v + 1)− + λb(x)u∗ + λb(x)).

Let u = u∗ + v and ∥v∥ = η. Let us set β = max b(x). Since ∥(u∗ + v +
1)−∥ < ∥(u∗ + v)−∥ and

∥λb(x)(u∗ + v + 1)− + λb(x)u∗ + λb(x)∥
≤ ∥b(x)(u∗ + v)−∥+ ∥b(x)u∗∥+ ∥b(x)∥
≤ β(η + 2∥u∗∥+ 1).

Thus

v ∈ β(η + 1)K.

From (2.13) we get

v + (∆2 + c∆− b(x))−1(−λb(x)u∗ − λb(x))(2.14)

= (∆2 + c∆− b(x))−1(λb(x)(u∗ + v + 1)−).
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By the same argument as the previous discussion, there is no solution of
(1.1) of the form u = u∗ + v with ∥v∥ = η. That is,

u− (∆2 + c∆− b(x))−1(λb(x)(u+ 1)− + λb(x)u∗ + λb(x)− b(x)− b(x)u∗)

(2.15)

̸= 0 on ∂Bη(u
∗).

Since the Leray-Schauder degree is invariant under a homotopy, we have

dLS(u− (∆2 + c∆)−1(b(x)(u+ 1)+ − b(x)), Bη(u
∗), 0)

= dLS(u− (∆2 + c∆− b(x))−1(λb(x)(u+ 1)−

+ λb(x)u∗ + λb(x)− b(x)− b(x)u∗), Bη(u
∗), 0)

= dLS(u− (∆2 + c∆− b(x))−1(−b(x)− b(x)u∗)), Bη(u
∗), 0)

= dLS(u− (∆2 + c∆)−1(b(x)u), Bη(0), 0).

Now we are trying to find the number of the negative eigenvalues of the
equation

(2.16) u− (∆2 + c∆)−1(b(x)u) = σu.

We note that u− (∆2+ c∆)−1(b(x)u) = σu is equivalent to the equation

(∆2 + c∆)u− rb(x)u = 0,where r =
1

1− σ

and σ < 0 corresponds to 0 < r < 1. We first consider the eigenvalue
problem

(∆2 + c∆)u− rλn(λn − c)
b(x)

λn(λn − c)
u = 0.

Since b(x)
λn(λn−c)

> 1, rk(λn(λn − c)) < λk(λk − c). Thus

(2.17) rk <
λk(λk − c)

λn(λn − c)
.

We next consider the eigenvalue problem

(∆2 + c∆)u− rλn+1(λn+1 − c)
b(x)

λn+1(λn+1 − c)
u = 0.

Since b(x)
λn+1(λn+1−c)

< 1, rk(λn+1(λn+1 − c)) > λk(λk − c). Thus

(2.18)
λk(λk − c)

λn+1(λn+1 − c)
< rk
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By (2.17) and (2.18),

λk(λk − c)

λn+1(λn+1 − c)
< rk <

λk(λk − c)

λn(λn − c)
.

Thus there exist n numbers of rk, k = 1, 2, · · · , n in the area of 0 < rk <
1, so there exist n number of negative eigenvalues σ of (2.16). Thus we
have

dLS(u− (∆2 + c∆)−1(b(x)u), Bη(0), 0) = (−1)n,

so we prove the lemma.

Lemma 2.3. Assume that c < λ1 and λn(λn−c) < b(x) < λn+1(λn+1−
c). Then there exists a constant s0 > 0 so large enough that if s ≥ s0,
then the problem

∆2u+ c∆u = b(x)((u+ 1)+ − 1) + sψ1(x), in Ω,(2.19)

u = 0, ∆u = 0 on ∂Ω

has no solution.

Proof. We suppose that the lemma is false. Then there exist a se-
quence un in H and (sn)n∈N such that limn→∞sn = +∞ and un are the
solutions of

un = (∆2 + c∆)−1(b(x)((un + 1)+ − 1) + snψ1(x)), in Ω,(2.20)

un = 0, ∆un = 0 on ∂Ω.

We claim that {un} is unbounded. In fact, if {un} is bounded, then
limn→∞

un

sn
= 0 in Ω, strongly in L2(Ω) and weakly in H. Dividing

(2.20) by sn, we have

(2.21)
un
sn

= (∆2 + c∆)−1(b(x)((
un
sn

+
1

sn
)+ − 1

sn
) + ψ1(x)).

Passing to the limit to both sides of (2.21), we have that

0 = (∆2 + c∆)−1(ψ1(x)),

which is a contradiction because the left hand side of the equality is 0,
but the right hand side is not equal to 0. Thus limn→∞ ∥un∥ = ∞. Let
zn = un

∥un∥ . Since {zn} is compact, there exists a subsequence, up to a

subsequence, {zn} such that limn∈N zn = z a.e. in Ω, strongly in L2(Ω)
and weakly in H. Dividing (2.20) by ∥un∥, we have

(2.22) zn = (∆2 + c∆)−1(b(x)((zn +
1

∥un∥
)+ − 1

∥un∥
) +

sn
∥un∥

ψ1(x)).
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We suppose that limn→∞
sn

∥un∥ = s ≥ 0. Passing to the limit in (2.22),

we obtain that

z = (∆2 + c∆)−1(b(x)z+ + sψ1(x)).(2.23)

z = 0, ∆z = 0 on ∂Ω.

We claim that (2.23) has only trivial solution z = 0. In fact, we suppose
that z ̸= 0. Multiplying both sides of (2.23) by ψ1(x) and integrating,
we have

0 ≤ s =

∫
Ω

((∆2 + c∆)zψ1(x)− b(x)z+ψ1(x))dx,

which is absurd because the right hand side of the above equation is
negative since Λ1 < 0 and −(Λ1 + b(x)) < 0 (which come from the
assumption c < λ1 and λn(λn− c) < b(x) < λn+1(λn+1− c). Thus z = 0.
This is a contradiction since ∥z∥ = 1. We prove the lemma.

Lemma 2.4. (A priori bound) Assume that c < λ1 and λn(λn − c) <
b(x) < λn+1(λn+1 − c)). If there exist a constant C > 0 and s∗ > 0 with
s∗ < s0 such that all solutions u of (2.19) with s ≤ s∗, then ∥u∥ ≤ C.

Proof. We argue by contradiction. Suppose that there exists a se-
quence (un, sn) such that ∥un∥ → ∞, sn → s∗, sn ≤ s∗ and un satisfy
the equation

(∆2 + c∆− b(x)− Λ1)un(2.24)

= −Λ1u
+
n + Λ1u

−
n + b(x)(un + 1)− + snψ1(x).

Let zn = wn

∥wn∥ . By the compactness of {zn}, there exists z such that

zn → z and z is a solution of the equation

(2.25) (∆2 + c∆− b(x)− Λ1)z = −Λ1z
+ + Λ1z

− + b(x)z−.

Taking inner product of both sides of (2.25) with ψ1(x), we have

0 = ((∆2 + c∆− b(x)− Λ1)z, ψ1(x))(2.26)

= (−Λ1z
+ + (Λ1 + b(x))z−, ψ1(x)).

Since −Λ1z
+ + (Λ1 + b(x))z− ≥ ϵ∥z∥, the right hand side of (2.26) is

bigger than or equal to 0. Thus the only possibility to hold (2.26) is that
z = 0, which is impossible since ∥z∥ = 1. Thus we prove the lemma.
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Lemma 2.5. Assume that c < λ1, λn(λn−c) < b(x) < λn+1(λn+1−c),
n ≥ 1. Then there exists a constant R > 0 (depending on C which is
introduced in Lemma 2.4) such that any solutions of (1.1) are contained
in BR(0) and the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)(u+ 1)+ − b(x)), BR(0), 0) = 0

for R > C.

Proof. This result follows from Lemma 2.3 and Lemma 2.4. By Lemma
2.3, there exists a constant s0 > 0 such that if s ≥ s0, (2.19) has
no solution. By Lemma 2.4, there exist a constant C and s∗ > 0
with s∗ < s0 such that if u is a solution of (2.19) with s < s∗, then
∥u∥ ≤ C. Let us choose R so large that R > C. We note that
u − (∆2 + c∆)−1(b(x)(u + 1)+ − b(x) + (1 − λ)s0ψ1(x)) = u − (∆2 +
c∆−b(x)−Λ1)

−1(−Λ1u
++Λ1u

−+b(x)(u+1)−+(1−λ)s0ψ1(x)) ̸= 0 on
∂BR(0) for 0 ≤ λ ≤ 1. By the homotopy invariance property, we have
that the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)(u+ 1)+ − b(x)), BR(0), 0)

= dLS(u− (∆2 + c∆)−1(b(x)(u+ 1)+ − b(x) + (1− λ)s0ψ1(x)), BR(0), 0)

= dLS(u− (∆2 + c∆)−1(b(x)(u+ 1)+ − b(x) + s0ψ1(x)), BR(0), 0) = 0,

where 0 ≤ λ ≤ 1. Thus we prove the lemma.

Proof of Theorem 1.1
By Lemma 2.5, there exists a large number R > 0 (depending on C)
such that the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)(u+ 1)+ − b(x)), BR(0), 0) = 0

for R > C. By Lemma 2.2, there exists a constant η > 0 such that the
Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)(u+ 1)+ − b(x)), Bη(u
∗), 0) = (−1)n,

where u∗ is a unique negative solution of the linear problem

∆2u+ c∆u = −b(x), in Ω,

u = 0, ∆u = 0 on ∂Ω.

If n is even, then the Leray-Schauder degree in the region BR(0)\Bη(u
∗)

is -1, so there exists the second solution of (1.1) in the regionBR(0)\Bη(u
∗).

Therefore there exist at least two solutions of (1.1), one of which is a
negative solution. If n is odd, then the Leray-Schauder degree in the
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region BR(0)\Bη(u
∗) is +1, so there exists the second solution of (1.1)

in the region BR(0)\Bη(u
∗). Therefore there exist at least two solutions

of (1.1), one of which is a negative solution. Thus we complete the proof.
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