DOI QR코드

DOI QR Code

Shift Forward 방법을 이용한 가선계-판토그래프 동적 상호작용 해석 프로그램의 효율성 향상에 관한 연구

A Study on Efficiency Improvement of the Catenary-Pantograph Dynamic Interaction Analysis Program using Shift Forward Method

  • Lee, Jin-Hee (Department of Mechanical Engineering, Ajou University) ;
  • Park, Tae-Won (Department of Mechanical Engineering, Ajou University)
  • 투고 : 2012.10.23
  • 심사 : 2012.11.22
  • 발행 : 2012.12.31

초록

철도차량에서 안정적인 집전성능의 확보는 운영의 질 및 최고속도를 결정하는 중요한 요인이다. 이러한 집전성능을 사전에 예측하기 위하여 과거부터 다양한 방법이 제안되었으며, 결과의 정확도 및 해석 과정의 효율성 향상을 위한 연구들도 동시에 진행되어 왔다. 본 논문에서는 집전성능 해석 프로그램의 해석 효율성을 향상시키는 방법에 대하여 제안한다. 제안된 방법은 가선과 같은 길이 방향 구조물에 대하여 판토그래프가 상호작용을 하는 영역만을 해석 모델의 운동방정식에 포함하는 것을 기본 개념으로 두고 있다. 이와 같은 방법을 적용하기 위한 일반화 과정 및 알고리즘을 소개하고 해석 결과의 타당성, 오차를 최소화하기 위한 방법 및 제안된 방법의 효용성을 검토하고자 한다.

In the electric railway vehicles, securing stable current collection performance is an important factor which determines the quality of operation and the maximum speed. In order to predict such current collection performance, various analysis methods have been proposed for a long time. Also, investigations for improving the accuracy of the results and the efficiency of the analysis process have been performed. In this paper, a method for the efficiency improvement has been proposed. This method is based on the basic concept that the system equations of motion of a catenary numerical model include only interactive range with a pantograph. In this paper, an algorithm and generalized process for applying proposed method are introduced. Also, validity of the results and utility of the method was verified and studied.

키워드

참고문헌

  1. T.X. Wu, M.J. Brennan (1998) Basic Analytical Study of Pantograph- Catenary System Dynamics, Vehicle System Dynamics, 30, pp. 443-456. https://doi.org/10.1080/00423119808969460
  2. W.M. Zhai, C.B. Cai (1998) Effect of Locomotive Vibrations on Pantograph-Catenary System Dynamics, Vehicle System Dynamics, 28, pp. 47-58.
  3. A. Alberto, J. Benet, et al. (2008) A high performance tool for the simulation of the dynamic pantograph-catenary interaction, Mathematics and Computers in Simulation, 79(3), pp. 652-667. https://doi.org/10.1016/j.matcom.2008.04.016
  4. A. Collina, S. Bruni (2002) Numerical Simulation of Pantograph- Overhead Equipment Interaction, Vehicle System Dynamics, 38, pp. 261-291. https://doi.org/10.1076/vesd.38.4.261.8286
  5. Y.H. Cho (2008) Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper, Journal of Sound and Vibration, 315(3), pp. 433-454. https://doi.org/10.1016/j.jsv.2008.02.024
  6. F.G. Rauter, J. Pombo, et al. (2007) Contact Model for the Pantograph- Catenary Interaction, Journal of System Design and Dynamics, 1(3), pp. 447-457. https://doi.org/10.1299/jsdd.1.447
  7. J.H. Seo, T.W. Park, et al. (2005) Dynamic analysis of a pantograph- catenary system using absolute nodal coordinates, Vehicle System Dynamics, 44, pp. 615-630.
  8. J.H. Lee, T.W. Park (2012) Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation, Trans. of the KSME A, 36(3), pp. 339-346. https://doi.org/10.3795/KSME-A.2012.36.3.339
  9. J. Ambrosio, J. Pombo, et al. (2008) A Memory Based Communication in the Co-simulation of Multibody and Finite Element Codes for Pantograph-Catenary Interaction Simulation, Computational Methods in Applied Sciences, 12, pp. 231-252.
  10. E. Arias, A. Alberto, et al. (2009) A mathematical model of the static pantograph/catenary interaction, International Journal of Computer Mathematics, 86(2), pp. 333-340. https://doi.org/10.1080/00207160802044100
  11. A.A. Shabana (2005) Dynamics of Multibody Systems, 3rd Edition, Cambridge University Press, Cambridge, pp. 309-323.
  12. E.J. Haug (1989) Computer-Aided Kinematics and Dynamics of Mechanical Systems, Volume I: Basic Methods, Prentice- Hall, Inc.
  13. EN 50318 (2002) Railway applications - current collection systems - validation of simulation of the dynamic interaction between pantograph and overhead contact line, BS EN.
  14. A. Facchinetti, S. Bruni (2012) Hardware-in-the-loop hybrid simulation of pantograph-catenary interaction, Journal of Sound and Vibration, 331, pp. 2783-2797. https://doi.org/10.1016/j.jsv.2012.01.033
  15. J.H. Lee, T.W. Park (2012) A Study on the Estimation and Improvement of the Current Collection Performance for the Next Generation High-Speed Train, Journal of the Korean Society for Railway, 15(5), pp. 429-435. https://doi.org/10.7782/JKSR.2012.15.5.429

피인용 문헌

  1. Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality vol.17, pp.1, 2014, https://doi.org/10.7782/JKSR.2014.17.1.7