DOI QR코드

DOI QR Code

두꺼운 디스크의 면외 진동 해석을 위한 준-해석적 환상 민드린 평판 요소

Semi-analytical Annular Mindlin Plate Element for Out-of-plane Vibration Analysis of Thick Disks

  • Kim, Chang-Boo (Department of Mechanical Engineering, Inha University) ;
  • Cho, Hyeon Seok (Department of Mechanical Engineering, Inha University) ;
  • Beom, Hyeon Gyu (Department of Mechanical Engineering, Inha University)
  • 투고 : 2012.08.29
  • 심사 : 2012.12.06
  • 발행 : 2012.12.31

초록

이 논문은 두꺼운 디스크의 면외 고유 진동을 유한 요소법을 사용하여 회전 관성 및 횡 전단 변형의 효과를 포함하면서 단순하고 효율적으로 정밀하게 해석할 수 있는 새로운 준-해석적 환상 민드린 평판 요소를 제시한다. 환상 민드린 평판의 평형 방정식의 정확한 해인 정적 변형 모드를 사용하여 요소의 보간 함수, 강성 및 질량 행렬은 절 직경 수에 대하여 유도되며, 이와 같은 요소는 면외 강체 운동을 정확하게 표현할 수 있고 전단 잠김이 없다. 제시된 요소를 적용하여 동심 링으로 지지되거나 지지되지 않은 균일 디스크 및 다단 디스크의 고유진동수를 해석하고, 그 결과를 선행 연구의 이론적 결과 또는 2차원 쉘 요소를 사용하여 얻어진 유한요소 해석 결과와 비교하여 제시된 요소의 수렴성 및 정확성을 조사하였다.

This paper presents a new semi-analytical annular Mindlin plate element with which out-of-plane natural vibration of thick disks can be analyzed simply, efficiently, and accurately through FEM by including effects of rotary inertia and transverse shear deformation. Using static deformation modes which are exact solutions of equilibrium equations of annular Mindlin plate, the element interpolation functions, stiffness and mass matrices corresponding to each number of nodal diameters are derived. The element is capable of representing out-of-plane rigid-body motions exactly and free from shear locking. Natural frequencies of uniform and multi-step disks with or without concentric ring support are analyzed by applying the presented element. Such results are compared with theoretical predictions of previous works or FEA results obtained by using two-dimensional shell element to investigate the convergence and accuracy of the presented element.

키워드

과제정보

연구 과제 주관 기관 : 인하대학교

참고문헌

  1. A.W. Leissa (1977) Recent research in plate vibrations: Classical theory, Shock and Vibration Digest, 9(10), pp. 13-24. https://doi.org/10.1177/058310247700901005
  2. A.W. Leissa (1978) Recent research in plate vibrations: Complicating effects, Shock and Vibration Digest, 10(12), pp. 21-35. https://doi.org/10.1177/058310247801001204
  3. A.W. Leissa (1987) Recent studies in plate vibrations, 1981-85: Part I, Classical theory, Shock and Vibration Digest, 19(2), pp. 11-18. https://doi.org/10.1177/058310248701900204
  4. A.W. Leissa (1987) Recent studies in plate vibrations, 1981-85: Part II, Complicating effects, Shock and Vibration Digest, 19(3), pp. 10-24. https://doi.org/10.1177/058310248701900304
  5. K.M. Liew, Y. Xiang, S. Kitipornchai (1995) Research on thick plate vibration: A literature survey, Journal of Sound and Vibration, 180, pp. 163-176. https://doi.org/10.1006/jsvi.1995.0072
  6. G.C. Pardoen (1973) Static, vibration and buckling analysis of axisymmetric circular plates using finite elements, Computers & Structures, 3, pp. 355-375. https://doi.org/10.1016/0045-7949(73)90023-0
  7. G.C. Pardoen (1975) Asymmetric bending of circular plates using the finite element method, Computers & Structures, 5, pp. 197-202. https://doi.org/10.1016/0045-7949(75)90010-3
  8. C.A. Mota Soares, M. Petyt (1978) Finite element dynamic analysis of practical discs, Journal of Sound and Vibration, 61, pp. 647-560.
  9. P. Priolo, C. Sitzia (1984) Efficiency of annular finite elements for flexural vibrations of thick disks, Journal of Sound and Vibration, 92, pp. 21-31. https://doi.org/10.1016/0022-460X(84)90370-5
  10. S. Han, W.D. Pilkey (1990) Stiffness matrices for the static, dynamic, and buckling analysis of circular plates, Finite Elements in Analysis and Design, 7, pp. 27-50. https://doi.org/10.1016/0168-874X(90)90013-5
  11. E. Reissner (1945) The effect of transverse-shear deformation on the bending of elastic plates, Journal of Applied Mechanics, 12, pp. 69-77.
  12. R.D. Mindlin (1951) Thickness-shear and flexural vibrations of crystal plates, Journal of Applied Physics, 22, pp. 316-323. https://doi.org/10.1063/1.1699948
  13. T. Irie, G. Yamada, S. Aomura (1980) Natural frequencies of Mindlin circular plates, Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics, 47, pp. 652-655. https://doi.org/10.1115/1.3153748
  14. Y. Xiang (2002) Exact vibration solutions for circular Mindlin plates with multiple concentric ring supports, International Journal of Solids and Structures, 39, pp. 6081-6102. https://doi.org/10.1016/S0020-7683(02)00494-8
  15. Y. Xiang, L. Zhang (2005) Free vibration analysis of stepped circular Mindlin plates, Journal of Sound and Vibration, 280, pp. 633-655. https://doi.org/10.1016/j.jsv.2003.12.017
  16. D.L. Thomas (1979) Dynamics of rotationally periodic structures, International Journal for Numerical Methods in Engineering, 14, pp. 81-102. https://doi.org/10.1002/nme.1620140107