DOI QR코드

DOI QR Code

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 1 : Linear Instability Analysis

연소 불안정 예측을 위한 열음향 해석 모델 - Part 1 : 선형 안정성 해석

  • Received : 2012.06.14
  • Accepted : 2012.09.21
  • Published : 2012.12.01

Abstract

For predicting eigenfrequency and initial growth rate of combustion instabilities in lean premixed gas turbine combustor, linear thermoacoustic analysis model was developed in the current paper. A model combustor was selected for the model validation, which has well-defined inlet and outlet conditions and a relatively simple geometry, compared to the combustor in the previous works. Analytical linear equations for thermoacoustic waves were derived for a given combustion system. It was found that the prediction results showed a good agreement with the measurements, even though there was underestimation for instability frequencies. This underestimation was more obvious for a longer flame (i.e. wider temperature distribution) than for a shorter flame.

가스터빈 희박 예혼합 연소기에서 발생하는 연소 불안정의 고유 주파수 및 초기 성장률의 예측을 위하여 선형 열음향 해석 모델이 소개되었다. 모델 검증을 위하여 입출구 조건이 잘 정의되고, 상대적으로 이전 연구 결과에서 적용된 연소기에 비하여 구조가 간단한 모델 연소기가 선정되었다. 정의된 연소기에서 음향 해석을 위한 선형 관계식이 유도되었고, 이를 통하여 선형 안정성 해석 방안이 제시되었다. 해석 결과 연소 불안정의 특성에 대한 전체적인 변화 경향은 성공적으로 예측하였으나, 주파수의 절대값에 있어서는 실제 실험 결과보다 다소 작은 값을 예측하는 것으로 나타났다. 이러한 주파수의 예측 오차는 짧은 화염보다는 긴 화염에서 더욱 두드러지는 것으로 나타났다.

Keywords

References

  1. Lieuwen, T., and Yang, V., Combustion instabilities in gas turbine engines, AIAA, Washington, 2005
  2. 김대식, "화염 전달 함수를 이용한 열음향 연소 불안정 해석 모델 소개," 한국추진공학회지, 제15권, 제6호, 2011, pp.98-106
  3. 김대식, "열음향 해석 모델을 통한 가스터빈 연소기에서의 선형 안정성 분석," 한국연소학회지, 제17권, 제2호, 2012, pp.17-23
  4. Truffin, K., Poinsot, T., "Comparison and extension of methods for acoustic identification of burners," Combustion and Flame, Vol. 142, No. 4, 2005, pp.388-400 https://doi.org/10.1016/j.combustflame.2005.04.001
  5. Poinsot, T., and Veynante, D., Theoretical and Numerical Combustion, 2nd ed., Edwards, 2005
  6. Kim, K., "Forced response of swirl stabilized flames in hydrogen enriched gas turbines," Ph.D. Dissertation, Pennsylvania State University, 2009
  7. Kim, K., Lee, J., Lee, H., Quay, B., and Santavicca, D., "Characterization of forced flame response of swirl-stabilized turbulent lean premixed flames in a gas turbine combustor," Journal of Engineering for Gas Turbine and Power, Vol. 132, Issue 4, 2010, pp.041502.1-041502.8
  8. Kim, K., Lee, J., Quay, B., and Santavicca, D., "Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors," Combustion and Flame, Vol. 157, No. 9, 2010, pp.1718-1730 https://doi.org/10.1016/j.combustflame.2010.04.016
  9. Noiray, N., Durox, D., Schuller, T., and Candel, S., "A unified framework for nonlinear combustion instability analysis based on the flame describing function," Journal of Fluid Mechanics, Vol. 615, 2008, pp.139-167 https://doi.org/10.1017/S0022112008003613
  10. Schuller, T., Durox, D., and Candel, S., "A unified model for the prediction of laminar flame transfer functions: comparisons between conical and V-flame dynamics," Combustion and Flame, Vol. 134, No. 1, 2003, pp.21-34 https://doi.org/10.1016/S0010-2180(03)00042-7
  11. Barton, R., and Ivey, J., "Nelder-Mead simplex modifications for simulation optimzation," Management Science, Vol. 42, No. 7, 1996, pp.954-973 https://doi.org/10.1287/mnsc.42.7.954
  12. Cheung, W., Sims, G., Coppleston, R., Tilston, J., Wilson, C., Stow, S., and Dowling A., "Measurement and analysis of flame transfer function in a sector combustor under high pressure conditions," Proceedings of ASME Turbo Expo 2003, GT2003-38219
  13. Kato, S., Fujimori, T., Dowling, A., and Kobayashi, H., "Effect of heat release distribution on combustion oscillation," Proceedings of the Combustion Institute, Vol. 30, Issue 2, 2005, pp.1799-1806 https://doi.org/10.1016/j.proci.2004.08.154

Cited by

  1. Improved Thermoacoustic Model Considering Heat Release Distribution vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.443