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Prototype-based Classifier with Feature Selection and Its Design with 
Particle Swarm Optimization: Analysis and Comparative Studies   

 
 

Byoung-Jun Park* and Sung-Kwun Oh†  
 

Abstract – In this study, we introduce a prototype-based classifier with feature selection that dwells 
upon the usage of a biologically inspired optimization technique of Particle Swarm Optimization 
(PSO). The design comprises two main phases. In the first phase, PSO selects P % of patterns to be 
treated as prototypes of c classes. During the second phase, the PSO is instrumental in the formation of 
a core set of features that constitute a collection of the most meaningful and highly discriminative co-
ordinates of the original feature space. The proposed scheme of feature selection is developed in the 
wrapper mode with the performance evaluated with the aid of the nearest prototype classifier. The 
study offers a complete algorithmic framework and demonstrates the effectiveness (quality of solution) 
and efficiency (computing cost) of the approach when applied to a collection of selected data sets. We 
also include a comparative study which involves the usage of genetic algorithms (GAs). Numerical ex-
periments show that a suitable selection of prototypes and a substantial reduction of the feature space 
could be accomplished and the classifier formed in this manner becomes characterized by low classifi-
cation error. In addition, the advantage of the PSO is quantified in detail by running a number of ex-
periments using Machine Learning datasets.   

 
Keywords: Prototypes, Feature selection, Particle Swarm Optimization (PSO), Wrapper mode of fea-
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1. Introduction 
 

One of most widely applied machine learning method is 
instance-based learning (IBL) which was shown to perform 
well in a number of challenging learning tasks, cf. [1, 2]. 
The essence of the method concerns a collection of some 
stored samples (patterns) using which the ensuing classifi-
cation tasks are being realized. When an object is provided 
or the solution to a problem has been found, it is stored in 
memory for the future use. When a new problem is en-
countered, memory is searched to find if the same problem 
has been already solved before. In this sense, it is neces-
sary to define small and consistent subset of data for im-
proving both computing speed and the performance of the 
method. 

Feature selection constitutes a fundamental development 
phase of pattern recognition and to a significant extent pre-
determines the effectiveness of the overall classification 
schemes, cf. [3, 4]. It has become apparent that this task 
becomes essential both from the standpoint of reduction of 
an overall computational overload as well as possible en-
hancements of discriminatory capabilities of the reduced 
feature space. Any optimization of feature subspaces quite 
often involves various mechanisms of evolutionary optimi-
zation, as evidenced in the pattern recognition literature, 

see [5-8] including genetic algorithms, evolutionary algo-
rithms, Particle Swarm Optimization (PSO) and others. 
The spectrum of feature selection techniques is typically 
split into two main categories such as wrappers and filters, 
cf. [9, 10]. Filters offer a more general view of the charac-
terization of feature space however they cannot guarantee 
effectiveness as far as a specific classification scheme is 
concerned. Wrappers, on the other hand, are focused on the 
optimization of the feature space which takes into account 
a specific classification scheme 

PSO [11, 12] is an example of an advanced search heu-
ristics inspired by the swarming or collaborative behavior 
of biological populations. PSO is similar to the genetic 
algorithms (GAs) in the sense that these two heuristics are 
population-based search techniques, namely, PSO and GA 
operate on a population (swarm) and transform it to an-
other set of population in a single iteration with likely im-
provement using a combination or deterministic and prob-
abilistic rules. PSO is quite often compared with GA [13-
17]. Interestingly, most of the literature is concerned with 
simple comparative scenarios involving experiments ex-
ploiting numeric data. An interesting comparison of PSO 
and GA with a focus on dimensionality aspects of the prob-
lems has been offered in [13] and [15], respectively. Statis-
tical comparison using t-test is presented in [16] for several 
benchmarks. However, this type of statistical comparative 
analysis has not been completed for Machine Learning data 
sets . 

The objective of this study is to develop a wrapper form 
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of the feature selection scheme based upon a prototype-
based classifier driven by the IBL paradigm using PSO and 
to demonstrate effectiveness (quality of solution) and effi-
ciency (computing cost) through the statistical analysis of 
results produced by the PSO and GA. In order to improve 
classification speed and classifier accuracy, it becomes 
necessary to form a suitable subset of patterns to serve as a 
collection of “anchor” points of the classifier. In addition to 
that, given a feature space of high dimensionality, we may 
anticipate that there is a relatively limited collection of 
essential features whose discriminatory capabilities arise 
because of their individual nature and their co-existence in 
the core set. As the combinatorial nature of the problem of 
forming the sets of prototypes and features is obvious, we 
consider the use of PSO as an underlying optimization ve-
hicle. PSO embraces two-level optimization processes in 
this study. At the first level, PSO chooses P % of patterns 
as a set of prototypes coming from patterns forming a mix-
ture of c classes. At the second level of the optimization 
process, PSO is instrumental in the formation of a core set 
of features that is a collection of the most meaningful and 
discriminative components of the original feature space. 
The design of the optimally reduced feature space is inves-
tigated in a parametric setting by varying the size of the 
prototype set (P %) and the size of feature set (d %) used in 
the proposed construct. In order to emphasize the advan-
tages of the use of PSO for Machine Learning data, we 
offer a thorough statistical analysis of results produced by 
the PSO and GA. More specifically, the t-test is used to 
assess and compare the effectiveness (quality of solution) 
and efficiency (computing cost) of these two search algo-
rithms. The study provides a comprehensive algorithmic 
framework of the prototype-based classifier with feature 
selection and its design with PSO and demonstrates the 
effectiveness of this approach when being used for a num-
ber of data sets. Numerical experiments were carried out 
and it is shown that a suitable selection of prototypes and a 
substantial reduction of the feature space could be accom-
plished that is also accompanied by a lower classification 
error. 

 
 

2. Two level processes for prototype-based classi-
fier with feature selection 

 
The prototype-based classifier is a method for classify-

ing objects based on the closest training patterns called 
prototypes in the feature space. This classifier embraces 
two selection problems to classify a new pattern to a class. 
One is the selection of prototype patterns and another one 
is feature selection.  

First level of the optimization process- prototype forma-
tion We start with choosing P % of patterns (prototypes) 
using particle swarm optimization (PSO); these patterns 
should come from all classes. The prototype-based classi-
fier generates classification results using only P % of pat-

terns. The classifier does not use any model and is only 
based on computing and using the distance between a pat-
tern and prototypes for achieving classification results. 
Given a set of N training patterns (prototypes) and a certain 
pattern without the class label, the classifier finds the pro-
totype being the closest in feature space to this pattern, and 
then assigns to it the class label of its nearest prototype. 
The underlying distance between the pattern and the proto-
type is measured by weighted Euclidean one, that is 
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where x and y are the two patterns positioned in the n-
dimensional space while σi is the standard deviation of the 
i-th feature of the patterns. 

Second level of the optimization process- feature selec-
tion Once the prototypes have been formed, we reduce the 
overall feature space by choosing a core set of features. 
Those features are regarded to be the most essential with 
regard to the classification problem at hand. Quite often 
their number could be quite reduced in comparison with 
the dimensionality of the overall feature space. One can 
consider d % of the total number of features, say 10%, 20%, 
etc. Namely, “d” expresses a proportion of the number of 
elements in the sub-feature space to the cardinality of the 
set of all features to be selected as a core set of features. 
Considering d % features of the original feature space, we 
arrive at nCd×n of possible combinations of the features that 
could be selected to build this core set. For instance, with 
n=60 and d % = 20% of features selected to form the core 
set; we are faced with 60C0.2×60= 60C12=1.399×1012 combina-
tions. This number goes up to 9.25×1014 and 3.605×1016 
when the percentage of the features to be used in the core 
set of features is equal to 30% and 40%, respectively. 
Therefore, we use PSO to select d % of features which 
minimize the classification error. 

The overall structure of the two level optimization proc-
esses for prototype-based classifier with feature selection is 
schematically illustrated in Fig. 1. The construction of the 
core set of features and forming prototypes is computation-
ally challenging and hence requires the use of a suitable 
optimization mechanism that is capable of dealing with the 
combinatorial nature of the task. 

 

 
Fig. 1. Overall view of the two level optimization proc-

esses for prototype-based classifier leading to the 
optimal reduction of the feature space 
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3. Particle Swarm Optimization in the optimal  
selection 

 
We provide a very brief description of the essence of the 

PSO and then show its direct use in feature selection. 
 

3.1 Particle swarm optimization 
 
PSO involves two competing search strategies [11, 12]. 

One deals with a social facet of the search. According to 
this, individuals ignore their own experience and adjust 
their behavior according to the successful beliefs of indi-
viduals occurring in their neighborhood. The cognition 
aspect of the search underlines the importance of the indi-
vidual experience where the element of population is fo-
cused on its own history of performance and makes ad-
justments accordingly.The basic elements of PSO tech-
nique are briefly introduced as follows. 

Performance index (fitness). Each particle is character-
ized by some value of the underlying performance (objec-
tive) index or fitness. 

Particles. The vectors (particles) of the variables in the 
n-dimensional search space will be denoted by p1, p2, …, 
pN. In the search, a swarm is composed of “N” particles 
involved which give rise to the concept of a swarm.  

Best particles. As a particle wanders through the search 
space, we compare its fitness at the current position with 
the best fitness value it has so far attained. This is done for 
each element in the swarm. The location of the particle at 
which it has attained the best fitness is denoted by pbest. 
Similarly, by gbest we denote the best location attained 
among all pbest. 

Velocity. The particle is moving in the search space with 
some velocity which plays a pivotal role in the search 
process [15, 17]. Denote the velocity of the i-th particle by 
vi. From iteration to iteration, the velocity is governed by 
the following expression 

 
 ik ik 1 1 ik ik 2 2 k ikv w v c r (pbest p ) c r (gbest p )= ⋅ + − + −   (2) 

 
i=1, 2, …, N, k=1, 2,….,n, where, r1 and r2 are random 
values in [0, 1] (viz. coming from a uniform distribution 
over the unit interval), and c1 and c2 are positive constants, 
called the acceleration constants and referred to as the cog-
nitive and social parameters, respectively. A drawback of 
the given velocity of PSO is associated with the lack of a 
mechanism responsible for the control of the magnitude of 
the velocities, which fosters the danger of swarm explosion 
and divergence [12]. To address the explosion problem a 
threshold vmax on the absolute value of the velocity that can 
be assumed by any particle was incorporated. The particle 
velocity in the kth coordinate is limited by some maximum 
value, say vk

max. This limit enhances the local exploration 
of the problem space and it realistically simulates the in-
cremental changes of human learning. As the above ex-
pression shows, c1 and c2 reflect the weighting of the sto-

chastic acceleration terms that pull the i-th particle toward 
pbesti and gbest positions. Low values allow particles to 
roam far from the target regions before being tugged back. 
High values of c1 and c2 result in abrupt movement toward, 
or past, target regions. Typically, the values of these con-
stants are set to 2.0. The inertia factor “w” is a control pa-
rameter that is used to establish the impact of the previous 
velocity on the current velocity. Hence, it influences the 
tradeoff between the global and local exploration abilities 
of the particles. For initial stages of the search process, 
large values enhancing the global exploration of the space 
are recommended. As the search progresses, the values of 
“w” are gradually reduced to achieve better exploration at 
the local level. 

 
3.2 Prototypes and features versus PSO 

 
As a generic search strategy, the particles of PSO has to 

be represented and a fitness function is introduced to solve 
a given optimization problem. 

Fitness (Performance) function. Given the wrapper 
mode of the prototype formation and feature selection, we 
consider the minimization of the classification error to be a 
suitable fitness measure. 

 

 100
patterns ofNumber 

patterns  iedmisclassif ofNumber Fitness ×=   (3) 

 
Particles. The elements of a vector of a particle consist 

of the number of pattern and the number of features for the 
optimal subsets of prototypes and features as shown in Fig. 
2. In order to solve the combinatorial problem, we adopt 
the representation scheme of the search space in the form 
of the (N+n)-dimensional unit hypercube (N is the number 
of patterns while n denotes the number of features). The 
content of the particle is ranked viz. each value in this vec-
tor is associated with an index the given value assumes in 
the ordered sequence of all values encountered in the vec-
tor. Here, the elements of a particle for prototypes and fea-
tures are ranked separately. Considering that we are con-
cerned with P % of all patterns and d % of all features, we 
pick up the first P×N (0<P<1) and d×n (0<d<1) entries of 
the vector of the each search space for prototypes and fea-

 

Fig. 2. The PSO formation of the selected prototypes and
the reduced feature space 
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tures, respectively. This produces a set of prototypes defin-
ing the training consistent subset and a collection of fea-
tures forming the reduced feature space. This mechanism 
of the formation of the prototypes space and the feature 
space is portrayed in Fig. 3. 

Stopping condition. There are two stopping conditions: 
(a) the algorithm terminates if the objective function does 
not improve during the last 100 generations, otherwise (b) 
it terminates after 500 iterations. The size of the population 
is related to the dimensionality of the search space. 

 
3.3 Metrics and hypothesis testing for comparative 

analysis  
 
In order to emphasize the advantages of PSO when ap-

plying it to problems of Machine Learning, we compare 
the results produced by PSO with those obtained when 
running the GA. PSO and GA are similar in the sense of 
population-based search method and iteration-based updat-
ing method for the optimal solution. In other words, PSO 
and the GA move from a set of points (population) to an-
other set of points in a single iteration with likely im-
provement using a combination and probabilistic rules. 
However, the ideas underlie that PSO are inspired not by 
the evolutionary mechanisms encountered in natural selec-
tion, but by the social behavior of flocking organisms, such 
as bird swarming and fish schooling.  

The common features of PSO and GA for the searching 
procedure are summarized as follows [14-17]. 

(a) These two techniques are search algorithms based on 
a population where each individual represents a can-
didate solution for the optimal solution. This property 
ensures the algorithms to be less susceptible of get-
ting trapped on local minima. 

(b) These two techniques start with a randomly gener-
ated population where the fitness values of the indi-
vidual are used in the evaluation when dealing with 
the generated population. 

(c) These two techniques have various numerical pa-
rameters to be carefully selected. There are genera-
tion (iteration) and population (swarm) as parameters 
shown commonly in both algorithms. In the case of 
the GA, crossover and mutation rates have to be se-
lected. Inertial weight and c1 and c2, need to be cho-
sen in PSO. 

(d) These two techniques come with some payoff infor-
mation (fitness function) to guide the search in the 
given problem space. Therefore, these can easily deal 
with non-differentiable functions.  

(e) These two techniques use not deterministic rules but 
probabilistic transition rules. Hence, these two tech-
niques are a kind of stochastic search technique that 
can explore a complicated and uncertain area. 

(f) These two techniques efficiently use historical infor-
mation to obtain new solutions with enhanced per-
formance and the global nature of a search area. 

The advantages of PSO over GA can be summarized as 
follows [14-17]: 

 
(a) PSO has the control parameter for the balance be-

tween the global and local exploration of the search 
space. This feature enhances the search capability of 
PSO. 

(b) PSO has memory, namely, information of good solu-
tions is retained and shared by all particles; whereas 
in GA, previous knowledge is destroyed once the 
population changes. 

(b) PSO exhibits algorithmic simplicity. The GA consists 
of three major operators, selection, crossover and 
mutation. However, PSO comes with a single opera-
tion of velocity calculation. 

(c) PSO has a simple implementation and this induces 
reduction of computation and eliminates the neces-
sity to select the best operator for a given optimiza-
tion. 

(d) Quite often PSO is superior in terms of convergence, 
speed, and accuracy than other biologically inspired 
optimization algorithms.  

 
The objective of this section is to statistically compare 

the performance of the two heuristic search methods, using 
a representative suite of test problems that are of diverse 
properties. The t-test is used to assess and compare the 
effectiveness and efficiency of these search algorithms.  

In this study, two hypotheses are tested. The first test is 
related to the effectiveness (minimum of classification er-
ror) of the algorithms and the second is related to the effi-
ciency (computational cost) of the algorithms. Effective-
ness is defined as the ability of the algorithm to repeatedly 
approach at sufficiently near global solutions when the 
algorithm is started from many random different points in 
the solution space. In other words, effectiveness is defined 
as finding a high quality solution for classification error as 
shown in (3). For the t-test of effectiveness between PSO 
and GA, the null hypothesis is assumed as the averages of 
classification error on PSO and GA are equal at the α=0.05 
significance level. The second hypothesis is the computa-
tional cost test (efficiency). This test directly compares the 
computational effort required by PSO and GA to solve 
each of the given problems. Efficiency is defined as a 
speedy reach at given classification error. For the t-test of 
efficiency between PSO and GA, the null hypothesis is 
defined as the means of the stopped iteration on PSO and 
GA are equal at the α=0.05 significance level. 

Furthermore we use some metrics such as minimum, 
maximum, average, standard deviation and running time 
for comparison of performance. 

 
 

4. Experiments 
 
The numerical studies presented here provide some ex-
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perimental evidence behind the effectiveness of the PSO 
approach. The detailed setup of an extensive suite of ex-
periments is reflective of the methodology we outlined in 
the previous sections. We used the following values of the 
parameters: maximum number of generations is 500; 
swarm size is 150; maximal velocity, vmax, is 20% of the 
range of the corresponding variables; wmin=0.4; wmax=0.9; 
and acceleration constants c1 and c2 are set to 2.0. The 
maximal velocity was set to 0.2 for the search carried out 
in the range of the unit interval [0, 1].  

 
4.1 Synthetic datasets 

 
We start with a series of two-dimensional synthetic exam-

ples. The primary objective is to illustrate the classification 
performance of the proposed classifier. The collections of 
data involve 2 classes as shown in Fig. 3. Each class consists 
of 150 patterns. Each group is governed by some Gaussian 
distribution described by its covariance matrix and the mean 
vector. In Fig. 3, mi denote mean vector of i-group and Φi is 
the covariance matrix for the given i-th group. 
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Fig. 3. Two-class synthetic datasets:  
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Table 1 shows classification error and selected features 

(SF) for the proposed prototype-based classifier. For the 
given synthetic datasets, 30 % of all patterns were required 
to be used prototypes so that the patterns can be correctly 
classified. The classification results and set of prototypes 
for the four types of data are shown in Fig. 4.   

Table 1. Classification error regarded as a function of “P” 

P (%) 30 40 50 60 70 
Error (%) 0.0 0.0 0.0 0.0 0.0 Synthetic 

2 SF x1,x2 x1,x2 x1,x2 x1,x2 x1,x2 
Error (%) 0.0 0.0 0.0 0.0 0.0 Synthetic 

3 SF x1,x2 x1,x2 x1,x2 x1,x2 x2 
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Fig. 4. Classification boundaries produced by the proto-
types (30 % of data) 

 
4.2 Machine learning datasets 

 
Here we consider a collection of datasets coming from 

the Machine Learning repository (http://www.ics.uci.edu/ 
~mlearn/MLRepository.html). Table 2 summarizes the per-
tinent details of the data such as the number of features, 
number of patterns, and the number of classes.  

 
Table 2. Machine Learning datasets used in the experi-

ments and their essential characteristics 

Dataset Number of  
features 

Number of  
patterns 

Number of 
classes 

Glass 9 214 6 
Wine 13 178 3 

Vehicle 18 846 4 
Image 19 210 7 

Dermatology 34 358 6 
Sonar 60 208 2 

 
When reporting results, we concentrate on the determi-

nation of relationships between the collections of features 
and obtained classification rates. We also look at the opti-
mal subsets of features constructed with the use of the 
method. All classification results are reported for the test-
ing data sets. 

For the Glass dataset, the relationship between the percent-
age of features used in the PSO optimization, values of “P” 
and the resulting classification error is presented in Table 3. 
Here, “No. of F” is the number of selected features for d % of 
entire features, “AVG” and “STD” indicates average and 
standard deviation, respectively. The classification error was 
computed over 10-fold realization of the experiments. 

With the increasing values of “d”, the classification error 
decreases substantially; in the case of P=30% it drops from 
34.4 to 10.6 when increasing the number of features from 
10% to 80%. The similar downward tendency occurs when 
dealing with any P % and considering the same increase in 
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the percentage of features. On the contrary, the use of all 
features leads ton the lower accuracy of classification. 
Changes in the values of “P” have far less effect on the 
classification rate. For any d %, the reduction in the classi-
fication error is about 10% over the values of P varying 
from 30% to 70%. In all cases, we observe that there are an 
optimal number of features leading to the lowest value of 
the classification error. Depending upon the values of “d”, 
the dimensionality of the reduced feature space varies in-
between 4 and 6.  

We report the number of occurrences of the features for 
all experiments. This indicator becomes more illustrative 
and offers an interesting view at the suitability of the fea-
tures when forming various reduced feature spaces and 
using different prototype set sizes. The results obtained in 
this case are illustrated in Table 4 and Fig. 5. The number 
of occurrences of a given feature is computed across all 
values of “P” and “d”. Interestingly, there are several 
dominant features such as refractive index (feature 1) and 
percentage of magnesium (feature 3) along with two other 
features, the percentage of potassium (feature 6) and cal-
cium (feature 7). Sodium (feature 2), silicon (feature 5) and 
iron (feature 9) are of lowest relevance. 

The results for some other Machine Learning data sets 
are reported in terms of the classification error and the 
number of feature occurrences contributing to the forma-
tion of the reduced feature space, see Fig. 6. The results 
reveal interesting dependencies as to the discriminatory 
character of the feature space. By inspecting the plots in 
Fig. 8, there is an evident effect of an “optimal” subset of 

Table 3. Classification error for the Glass 

P % d %  
(No.off) 30 40 50 60 70 

AVG±STD o
ver P 

10 (1) 34.4±1.82 33.3±1.61 33±2.43 30.3±3.89 25.7±4.04 31.3±4.23
20 (2) 19.1±1.77 18±2.12 11.8±1.69 11±2.34 7.8±2.56 13.6±4.8 
30 (3) 14.3±1.68 9.4±1.22 8.4±1.67 6.3±1.25 3.5±2.41 8.4±3.96 
40 (4) 11.7±2.33 9.1±1.66 4.6±1.89 4±1.66 2.2±1.49 6.3±3.99 
60 (5) 11±2.57 8.4±2.3 5.2±1.63 3.5±1.64 1.5±1.03 5.9±3.88 
70 (6) 11±2.13 8.7±2.29 5.7±1.62 3.8±2.51 1.2±1.41 6.1±4.01 
80 (7) 10.6±1.92 7.2±1.6 5.4±1.49 3.1±1.46 1.2±0.65 5.5±3.57 
90 (8) 10.8±2.48 8.4±2.27 5.2±1.57 3.4±2.08 1.2±1.21 5.8±3.95 
100 (9) 12.2±1.61 8.9±1.39 6.6±1.58 6±1.8 1.4±1.53 7±3.91 

 
Table 4. Cumulative number of individual features being 

selected over all “P” 

d % (No. of selected features) Feature 
No. 10(1) 20(2) 30(3) 40(4) 60(5) 70(6) 80(7) 90(8)

Sum

1 14 47 50 50 50 50 50 50 361
2 0 0 1 10 21 26 39 46 143
3 0 28 22 45 46 43 44 50 278
4 36 3 5 4 12 28 41 50 179
5 0 0 1 0 7 32 36 48 124
6 0 17 36 40 34 37 45 49 258
7 0 5 35 46 48 50 50 50 284
8 0 0 0 5 31 32 44 50 162
9 0 0 0 0 1 2 1 7 11
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Fig. 5. Cumulative number of occurrence of individual 
features for the Glass data: (a) Feature usage index 
over all values of d and P; (b) feature usage index 
over all P for each d. 
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(a) Wine 
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(b) Vehicle 
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(c) Image 
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(d) Dermatology 
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(i) Sonar 

Fig. 6. Classification error and the number of occurrences 
of features obtained in the reduced feature space for 
the datasets 
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the feature space: clearly a subset of the original features 
leads to better classification results when compared with 
the outcomes of the classifier operating on the entire fea-
ture space. There are also datasets in which relationship 
between classification error and reduced feature space 
shows a downwards trend linearly for the use of more fea-
tures. That makes the choice of the reduced feature space 
less apparent. We observe this phenomenon in the case of 
the Sonar. 

The quality of the reduced feature space is quantified 
with the use of the classification errors produced by the 
prototype-based classifiers on the testing set. As Table 5 
demonstrates, we have achieved substantially lower classi-
fication errors than those already reported in the literature. 
The results are reported for selected scenarios of the ex-
periments. First, the best classification error obtained 
across all combinations of “d” and “P” is given. For the 
size of the prototype set being 50 % of the overall data, the 
classification error attains higher values which are not sur-
prising given that the sizes of the prototype sets for the best 
classification error were typically higher in the range of 
70 %. To assess the effect of the size of the prototype set, 
we computed an average classification taken over the range 
of the sizes of the prototype sets used in the experiments. 
This provides us with a better view at the diversity of the 
results implied by the size of the prototype set. 

 
Table 5. Comparison of classification errors reported in the 

experiments and available in the literature 

Dataset 

Dimen-
sionality of 

reduced 
space & 
reduction 
rate (%) 

Minimal 
error (%) 

and associ-
ated values 

of P 

Error 
(%)at 

P=50% 

Average 
error (%) 

over P 

Error (%) reported 
in the literature 

Glass 5(44) 1.2±0.65 
(70) 

5.2 
±1.63 

5.9 
±3.88 

29.5[18], 25.0[19], 
4.7[20] 

Wine 5(62)  0.0±0.0 
(60) 

0.0 
±0.0 

0.0 
±0.0 

1.5[19], 0.6[20], 
1.2[21]  

Vehicle 11(39) 7.5±1.62 
(70) 

12.7 
±1.74 

12.9 
±3.22 

21.5[20], 28.2[21], 
31.2[22] 

Image 8(58) 0.0±0.0 
(70) 

1.4 
±0.67 

1.9 
±1.79 2.1[19], 8.4[20]

Dermatol-
ogy 17(50) 0.0±0.0 

(70) 
0.4 
±0.36 

0.7 
±0.75 

3.0[20], 6.8[23], 
2.6[24] 

Sonar 30(50) 0.0±0.0 
(70) 

2.9 
±2.1 

2.9 
±2.32 14.8[24]  

 
We have looked at more references where some research 

was completed with respect to the use of instance-based 
learning classifiers however with the use of different fea-
ture selection schemes. Kudo et al. have carried out a com-
parative study of algorithms for large-scale feature selec-
tion (where the number of feature is over 50). The suitabil-
ity (relevance) of a feature subset is expressed by the leave-
one-out correct-classification rate of a nearest-neighbor (1-
NN) classifier. There are lots of algorithms for feature se-
lection such as SFS, SBS, PTA, GA, etc. [28]. Selective k-
NN classifiers have been considered in [25]. The subset 

was established by means of sequential feature selection 
methods. Feature selection using the naïve Bayes rule has 
presented for the case of multiclass datasets [26]. The ex-
pectation maximization algorithm was used to estimate a 
mixture of modes for each class projected over the features. 
Tahir et al. proposed a hybrid approach for simultaneous 
feature selection and feature weighting of k-NN rule based 
on Tabu Search heuristic [27]. These results are compared 
with our results for the dimensionality of reduced feature 
space and classification error averaged over P as shown in 
Table 6. We can conclude that the proposed method led to 
better classification results on the reduced feature space 
than those obtained in some previous studies. 

 
Table 6. Comparison of feature selection for the dimen-

sionality of reduced feature space and classifica-
tion error 

Reported in the literature 

Dataset Classifica-
tionerror (%)

Dimen-
sionality 

of re-
duced  
feature 

litera-
ture 

Classifi-
cation 

error (%)

Dimensionality 
of reduced 

feature space

[25] 21.5 5 
[26] 25.9 4 Glass 5.9±3.88 5 
[27] 19.6 6 

Wine 0.0±0.0 5 [26] 1.2 6 
[25] 24 13 
[26] 27.4 15 
[27] 25.4 13 

Vehicle 12.9±3.22 11 

[28] 16~18 8 or 9 
Image 1.9±1.79 8 [26] 2.6 15 

[27] 5.8 17 Sonar 2.9±2.32 30 
[28] 5~10 20~40 

 
4.3 PSO versus GA for machine learning datasets 

 
To complete a thorough comparative analysis, we carried 

out experiments with the use of GAs which are one of the 
commonly used methods of evolutionary optimization. For 
the machine learning datasets, two performance tests, ef-
fectiveness and efficiency, are carried out for both algo-
rithms under consideration, namely, PSO and GA. The 
parameters used when running PSO and GA are presented 
in Table 7.  

 
Table 7. Parameters used in PSO and GA 

PSO GA 
Max. iterations: 500 Max. generations: 500 

Swarm size: 150 Population size: 150 
Data type: real Data type: real 

vmax: 20% of a search range Selection: Roulette 
[wmin wmax] = [0.4 0.9] Mutation (rate): Uniform (0.1) 

c1, c2 : 2.0 Crossover (rate): One point (0.75)
 
In order to come up with representative results concern-

ing computing time, the same conditions were used when 
running the GA. This concerns the use of the same fitness 
function, stopping condition, the use of the maximal num-
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ber of generations and the size of the population. Further-
more, the results shown in Fig. 10 and Table 8 were ob-
tained when running the experiments in the same comput-
ing environment (C programming language and Linux 
Cluster which offer a 64-bit environment with two dual-
core processors and 4GB of RAM) for the case of P=50% 
and d=50 %. The results represent the outcome of the ex-
periments repeated 10 times. In addition, we used statisti-
cal significance measure (t-test) to assure the reliability of 
the results when being compared with those obtained when 
running the GA. 

Table 8 shows the comparison of effectiveness in terms 
of statistical results of PSO and GA approaches. In here, 
‘Min’, ‘Max’, ‘Avg’ and ‘Std’ denote the minimum, the 
maximum, the average and the standard deviation of classi-
fication error over 10 independent runs, respectively. CpT 
is the computing time per individual and calculated by di-
viding the total algorithm time (iteration and population). 
Interestingly, in all cases the PSO results are better than 
those produced by the GA. Likewise the computing time 
per iteration was also shorter when using the PSO. The last 
column in Table 8 contains the results of t-test completed 
for the PSO and GA. We use t-test with α=0.05. Given the 
results reported for the t-test, we can reject the null hy-
pothesis for most of datasets except Dermatology. This 
means that the classification errors produced by the PSO 
are statistically different from those provided by the GA. 

 
Table 8. Comparison of effectiveness in terms of statistical 

results of PSO and GA approaches 

Datasets Method Min 
(%) 

Max 
(%) 

Avg
(%)

Std 
(%) 

CpT  
(sec) t-test 

PSO 2.9 7.6 5.8 1.9 0.706 h 1 Glass 
GA 8.6 13.3 11 1.4 0.725 ρ 0 
PSO 0 0 0 0 0.537 h 0 Wine 
GA 0 0 0 0 0.591 ρ 1 
PSO 10.2 21.6 13.2 3.8 15.006 h 1 Vehicle 
GA 20.9 24.6 22.9 1.2 16.264 ρ 0 
PSO 0 4.8 1.8 1.7 0.914 h 1 Image 
GA 1.9 4.8 3.7 1 1.014 ρ 0.0076
PSO 0 1.1 0.6 0.3 3.834 h 0 Derma-

tology GA 0 1.7 0.8 0.5 4.173 ρ 0.2758
PSO 1.9 5.8 3.1 1.4 2.174 h 1 Sonar 
GA 2.9 5.8 4.5 0.9 2.157 ρ 0.0179

 

As the second comparison of PSO and GA, the results of 
efficiency test for the same convergence criteria are shown 
in Table 9. ‘Given error’ is used as the stopping condition 
for the PSO and GA, namely, the algorithms are stopped 
when the classification error is faced with the lower value 
than the given error while algorithms run. The last genera-
tion concerns the results being produced by the algorithm 
before it was terminated (viz. The stopping criterion has 
been satisfied). As shown by the results, the average con-
vergence speed of the PSO for the given classification error 
is higher than that of the GA. For the t-test, the null hy-

pothesis is defined as the mean of the last generation of 
PSO and GA are equal at the confidence level α=0.05. 
These results led to the rejection of the null hypothesis for 
Vehicle, Image and Sonar, and the acceptance of the hy-
pothesis for the Glass, Wine and Dermatology. Based on 
the results reported in Table 9, the computational effort 
required by PSO to converge to a solution is substantially 
lower than that of the GA when considering the same con-
vergence criteria. 

 
 

Table 9. Comparison of efficiency in terms of statistical 
results produced by the PSO and GA for the given 
classification error as the Max value in Table 8 

Datasets Given 
error (%) Method Min Max Avg Std t-test 

PSO 8 27 14.9 5.4 h 0 Glass 13.3 
GA 3 146 38.2 42.5 ρ 0.1028
PSO 1 6 3.3 1.8 h 0 Wine 0 
GA 2 10 3.9 2.8 ρ 0.5743
PSO 2 11 6.2 3.2 h 1 Vehicle 24.6 
GA 16 89 42 24.0 ρ 0.0002
PSO 4 62 17.5 17.1 h 1 Image 4.8 
GA 5 131 48.5 41.9 ρ 0.0439
PSO 1 29 13.9 8.9 h 0 Derma-

tology 1.7 
GA 3 46 18.2 14.7 ρ 0.4398
PSO 4 18 9.5 5.0 h 1 Sonar 5.8 
GA 4 95 30.1 26.9 ρ 0.0286

 
 
 

5. Conclusions 
 
In this study, we have introduced a prototype-based clas-

sifier with feature selection developed in the framework of 
Particle Swarm Optimization (PSO). The two-level optimi-
zation process of forming the prototypes and the feature 
space is reflective of the conjecture on the importance of 
forming a set of prototypes and a core set of features whose 
discriminatory capabilities emerge through their co-
occurrence in these set. The use of the prototype-based 
classifier is also justifiable considering that this classifica-
tion scheme is the simplest that could be envisioned in pat-
tern classification.  

While the experimental results provide sound evidence 
behind the selection process showing that the reduced fea-
ture spaces led to the better classification results than those 
obtained in some previous studies, they are also quite re-
vealing in showing that the reduction of the feature space 
could exhibit different effectiveness. In some cases, the 
reduction of the dimensionality of the feature space could 
be high but there could be cases where the elimination of 
subsets of features could not be strongly justifiable. In ad-
dition, when dealing with the selected Machine Learning 
datasets, the obtained results show that the PSO is pre-
ferred over GA in terms of effectiveness (quality of solu-
tion) and efficiency (computing cost) of the solutions. 
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