초록
중국의 명수법은 기록은 구어체를 사용하고, 계산은 산대를 사용하는 이중 구조를 가지고 있었다. 또 산서는 실생활의 문제만 다루는 과정에서 수학적 구조를 나타내는 방법을 택하여 계산 과정을 제외하면 이들에서 취급한 수는 모두 명수(名數)들이어서 순수한 수론의 발전을 이룰 수 없었다. 송대에 0의 도입과 함께, 천원술의 표현에서 나타나는 계수를 산대로 표시하는 방법을 통하여, 산대가 계산 도구와 함께 추상수의 기수법(記數法)이 되는 과정을 밝힌다. 수량의 단위를 사용한 소수의 표현도 이 과정에서 산대 표현으로 대치되었다. 그러나 명대에 산대 계산이 주산으로 대치되고 천원술이 잊히게 되어 추상수의 개념도 함께 잊히게 되었다. 청대의 산학자 심사계(沈士桂)가 저서 간첩이명산법(簡捷易明算法)에서 분수의 소수표시와 계산을 하는 과정에서 순환소수를 인지하고 이들의 계산법을 확립한 것도 보인다.
In Chinese mathematics, there have been two numeral systems, namely one in spoken language for recording and the other by counting rods for computations. They concerned with problems dealing with practical applications, numbers in them are concrete numbers except in the process of basic operations. Thus they could hardly develop a pure theory of numbers. In Song dynasty, 0 and TianYuanShu were introduced, where the coefficients were denoted by counting rods. We show that in this process, counting rods took over the role of the numeral system in spoken language and hence counting rod numeral system plays the role of that for abstract numbers together with the tool for calculations. Decimal fractions were also understood as denominate numbers but using the notions by counting rods, decimals were also admitted as abstract numbers. Noting that abacus replaced counting rods and TianYuanShu were lost in Ming dynasty, abstract numbers disappeared in Chinese mathematics. Investigating JianJie YiMing SuanFa(簡捷易明算法) written by Shen ShiGui(沈士桂) around 1704, we conclude that Shen noticed repeating decimals and their operations, and also used various rounding methods.