천원술(天元術)과 기수법(記數法)

TianYuanShu and Numeral Systems in Eastern Asia

  • Hong, Sung Sa (Department of Mathematics, Sogang University) ;
  • Hong, Young Hee (Department of Mathematics, Sookmyung Women's University) ;
  • Lee, Seung On (Department of Mathematics, Chungbuk National University)
  • 투고 : 2012.09.20
  • 심사 : 2012.10.22
  • 발행 : 2012.11.30

초록

중국의 명수법은 기록은 구어체를 사용하고, 계산은 산대를 사용하는 이중 구조를 가지고 있었다. 또 산서는 실생활의 문제만 다루는 과정에서 수학적 구조를 나타내는 방법을 택하여 계산 과정을 제외하면 이들에서 취급한 수는 모두 명수(名數)들이어서 순수한 수론의 발전을 이룰 수 없었다. 송대에 0의 도입과 함께, 천원술의 표현에서 나타나는 계수를 산대로 표시하는 방법을 통하여, 산대가 계산 도구와 함께 추상수의 기수법(記數法)이 되는 과정을 밝힌다. 수량의 단위를 사용한 소수의 표현도 이 과정에서 산대 표현으로 대치되었다. 그러나 명대에 산대 계산이 주산으로 대치되고 천원술이 잊히게 되어 추상수의 개념도 함께 잊히게 되었다. 청대의 산학자 심사계(沈士桂)가 저서 간첩이명산법(簡捷易明算法)에서 분수의 소수표시와 계산을 하는 과정에서 순환소수를 인지하고 이들의 계산법을 확립한 것도 보인다.

In Chinese mathematics, there have been two numeral systems, namely one in spoken language for recording and the other by counting rods for computations. They concerned with problems dealing with practical applications, numbers in them are concrete numbers except in the process of basic operations. Thus they could hardly develop a pure theory of numbers. In Song dynasty, 0 and TianYuanShu were introduced, where the coefficients were denoted by counting rods. We show that in this process, counting rods took over the role of the numeral system in spoken language and hence counting rod numeral system plays the role of that for abstract numbers together with the tool for calculations. Decimal fractions were also understood as denominate numbers but using the notions by counting rods, decimals were also admitted as abstract numbers. Noting that abacus replaced counting rods and TianYuanShu were lost in Ming dynasty, abstract numbers disappeared in Chinese mathematics. Investigating JianJie YiMing SuanFa(簡捷易明算法) written by Shen ShiGui(沈士桂) around 1704, we conclude that Shen noticed repeating decimals and their operations, and also used various rounding methods.

키워드

참고문헌

  1. 郭書春 主編, <中國科學技術史, 數學卷>, 科學出版社, 2010.
  2. 沈士桂, <簡捷易明算法>, 1704, The National Library of Korea.
  3. 吳文俊 主編, <中國數學史大系, 第七卷>, 北京師范大學出版社, 1999.
  4. <中國科學技術典籍通彙> 數學卷 全五卷, 河南敎育出版社, 1993.
  5. <中國歷代算學集成> 上, 中, 下, 山東人民出版社, 1994.
  6. J. L. Berggren, Episodes in the Mathematics of Medieval Islam, Springer, 1986.
  7. Li Yan and Du Shiran, Chinese Mathematics, A Concise history, trans. J. N. Crossley and A. W.-C. Lun, Claredon Press, 1987.
  8. J-C. Martzloff, A History of Chinese Mathematics, trans. S. S. Wilson, Springer, 1997.
  9. Hong Sung Sa, Theory of Equations in the history of Chosun Mahtematics, Proceeding Book 2, The HPM Satellite Meeting of ICME-12, 719-731, 2012.
  10. Hong Sung Sa, Hong Young Hee, Lee Sang-Gu, Oh Chae Whan, Mathematics Textbooks in the 19th Century Chosun (19世紀朝鮮의 數學敎科書), The Korean Journal for History of Mathematics(한국수학사학회지) 23(2010), No. 1, 1-14.