초록
본 논문은 복소수 지도에 대한 De Morgan의 관점을 분석하였다. De Morgan의 복소수를 도입하고 정당화하는 과정은 그의 대수에 대한 관점이 보편적 산술, 기호 대수, 의미 대수로 발전해가는 과정과 일치한다. De Morgan은 허수의 유용성을 이유로 수학적으로 엄밀하지 않은 허수를 인정하였다. 이를 설명하기 위해 De Morgan은 기호의 의미나 대상은 고려할 필요가 없다는 기호대수를 수용했다. 그러나 그는 허수의 의미를 포기할 수 없었고, 결국 길이와 방향을 가진 직선을 대상으로 하는 이중대수 이론을 전개하였다. De Morgan은 복소수 지도를 정당화하는 과정을 정련해가면서 대수와 수학 전반에 관한 자신의 관점을 지속적으로 발전시켜나갔다고 볼 수 있다. 이는 복소수의 지도가 새로운 수학적 개념의 도입에 머물지 않고 대수에 대한 관점의 변화와 발전을 일으키는 촉매가 될 수 있음을 보여주고 있다.
The objective of this paper is to study De Morgan's perspective on teaching and learning complex numbers. De Morgan's didactical approaches reflect the process of development of his thoughts about algebra from universal arithmetic, symbolic algebra to meaning algebra. De Morgan develop his perspective on algebra by justifying and explaining complex numbers. This implies that teaching and learning complex numbers is a catalyst for mathematical development of De Morgan.