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ABSTRACT

The problem of Metal Area Segmentation (MAS) in X-ray CT images is a very hard task because

of metal artifacts. This research features a practical yet effective method for MAS in X-ray CT images

that exploits both projection image and reconstructed image spaces. We employ the Relevant Neighbor

Area (RNA) idea [1] originally developed for projection image inpainting in order to create a novel feature

in the projection image space that distinctively represents metal and near-metal pixels with opposite

signs. In the reconstructed result of the feature image, application of a simple thresholding technique

provides accurate segmentation of metal areas due to nice separation of near-metal areas from metal

areas in its histogram.

Key words: Medical Imaging, X-ray CT, Metal Area Segmentation, Relevant Neighbor Area, Metal

Artifacts Reduction

※ Corresponding Author : Juneho Yi, Address : (440-

746) 300 Chunchun-dong Jangan-gu, Suwon, Korea,

TEL : +82-31-290-7142, FAX : +82-31-290-7947, E-mail

: jhyi@skku.edu

Receipt date : Sep. 16, 2012, Revision date : Oct. 19, 2012

Approval date : Nov. 13, 2012
††††School of Electronic and Electrical Computer Engin-

eering Sungkyunkwan University, Korea

(E-mail: karisdo@gmail.com)
††††School of Electronic and Electrical Computer Engin-

eering Sungkyunkwan University, Korea

(E-mail: lunlun@skku.edu)
††††School of Electronic and Electrical Computer Engin-

eering Sungkyunkwan University, Korea

(E-mail: jkkim@skku.edu)
††††School of Electronic and Electrical Computer Engin-

eering Sungkyunkwan University, Korea

※ This work was supported in part by Minstry of

Knowledge and Economy , grant 10031993, and by the

National Research Foundation of Korea (NRF), grant

2011-0006637.

1. INTRODUCTION

Metal Area Segmentation (MAS) research in

X-ray CT images has been pursued in the context

of solving the problem of Metal Artifact Reduction

(MAR). In most MAR work, a solution to MAS

is necessary in order to effectively remove metal

artifacts caused by dense objects such as metal.

MAS in X-ray CT images can be carried out either

in the projection image space or in reconstructed

image space. Henceforth, we refer to the former

approach as Projection Image Segmentation (PIS)

and the latter as Reconstructed Image Segmenta-

tion (RIS). Both PIS and RIS have their own

drawbacks. Since metal information in a projection

image gets dispersed, MAS in the projection image

space is inherently hard. RIS is relatively easy

compared to PIS in that metal area appears spa-

tially concentrated in reconstructed images, but

still suffers from artifacts near metal.

In this research, we propose a simple yet effec-

tive hybrid segmentation (HS) method that over-

comes the drawbacks of PIS and RIS by exploiting

both image spaces. As can be seen in Fig. 1, we

first transform the projection image so that metal,

near metal, and non-metal areas are more dis-

tinctively represented in the transformed image.

We call this image ‘pseudoPIS’. In order to create

pseudoPIS, we exploit the Relevant Neighbor Area

(RNA) principle [1] that was originally developed

for projection image inpainting to boost the MAR

performance. The RNA principle can simply be
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Fig. 1. Hybrid segmentation that exploits both

projection image and reconstructed image

spaces.

stated as “In the absence of highly dense object

such as metal, a pixel in projection image is well

represented by a weighted average of its neighbor

pixels in RNA”. The RNA signifies neighbor pixels

that have information relevant to the target pixel

to be inpainted. The pixels and their weights in a

RNA are computed by forward-projecting the area

that affects the target pixel to be inpainted.

We basically find outlier pixels in the projection

image that do not follow the RNA principle since

those outlier pixels are likely to correspond to met-

al and possibly, near-metal areas. This process

yields a transformed projection image, ‘pseudoPIS’.

In pseudoPIS, metal and near-metal pixels are dis-

tinctively represented by opposite signs with some

magnitude and non-metal pixels show small val-

ues close to zero. The distinction between metal

and near-metal pixels carries over to the re-

constructed image of pseudoPIS. In the recon-

structed image of pseudoPIS, we exclude pixels

belonging to near-metal and simply distinguish

between metal and non-metal pixels using histo-

gram thresholding. We have used the Otsu’s meth-

od [2] where an optimal threshold value is found

such that the maximum ratio of between-class to

within-class scatter is achieved. However, a var-

iant method [3] using the Otsu's method can also

be employed. Experimental results show that the

performance of the proposed hybrid segmentation

method outperforms that of PIS and RIS.

2. RELATED WORK

As previously mentioned, researches of MAS in

X-ray CT images can be divided into PIS and RIS.

In the category of PIS, a Markov random field

(MRF) model in combination with Bayesian tech-

niques is applied to obtain segmentation results [4].

In [5], a projection image is treated as an image

formed by two regions of approximately piece-

wise-constant intensities and represented by the

active contours model. RIS often achieves MAS by

thresholding the initially reconstructed image

where metal artifacts are not removed. The seg-

mentation results are fed into the MAR process,

irrespective of whether they are FBP (Filter

back-projection) based methods [6] or statistical

methods [7]. Akhoondali et al. [8] used a region

growing method and Zhang et al. [9] employed

Laplacian diffusion based automatic metal

segmentation.

PIS is inherently hard because metal informa-

tions gets dispersed in the projection image space.

In contrast, RIS is relatively easier than PIS in the

sense that metal pixels are spatially in proximity.

However, distinction between metal areas and

near-metal areas in the reconstructed image space

remains a formidable task because a reconstructed

image suffers from metal artifacts near metal.

3. RNA (RELEVANT NEIGHBOR AREA)

In this section, we briefly overview the RNA

idea [1] that was first proposed as an effective

method for projection image inpainting for MAR.

The next section describes how we exploit this

RNA idea for MAS in X-ray CT images.

The RNA principle can simply stated as "In ab-

sence of highly dense object such as metal, a target

pixel to be inpainted is well represented as a

weighted average of RNA pixels". The RNA signi-

fies neighbor pixels that have information relevant

to the target pixel to be inpainted. The RNA idea

innovatively reduces inpainting errors simply by

excluding the neighbor pixels that have no effect

on the target pixel to be inpainted.
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Fig. 2. A simulated example of forming an RNA in a 5×5 rectangular neighborhood.

Fig. 2 illustrates how an RNA is formed in the

projection image using a simple simulation where

the detector array consists of 13 pixels and rotates

in 10 deg increment. The projection image is a

two-dimensional array whose column contains the

value of the detector array at each angle. The value

of pixel, p, in the projection image depends on the

attenuation coefficients (AC) of the object’s area

through which X-rays pass. That is, the value of

the pixel p is only affected by AC’s of area A as

shown in Fig. 2 (a). When the detector is rotated,

the neighbor pixels that get to have AC information

of area A can only affect the inpainting value of

the pixel. The complete set of the RNA pixels in

case of a 5x5 rectangular neighborhood for the tar-

get pixel, p (marked with ‘x’) to be inpainted is

shown in Fig. 2 (e). The pixels and their exact

weights in an RNA can be computed via for-

ward-projection of area A.

3. HYBRID SEGMENTATION USING

THE RNA PRINCIPLE

As previously described, we find outlier pixels

in the projection image that do not follow the RNA

principle. That is, we do not explicitly label regions

in pseudoPIS but only provide salient distinction

between metal, near-metal, and non-metal regions

so that MAS can be facilitated in the reconstructed

image of pseudoPIS.

PseudoPIS is produced by transforming the pro-

jection image using equation (1). I(x,y) denotes the

intensity value of pixel (x,y) in the projection image

and R represents RNA filtering of which the output

is the weighted average of pixels in the RNA of

pixel (x,y). We simply compute the difference im-

age, D(x, y, R), by subtracting R(I(x,y)) from

I(x,y):

D(x, y, R)=I(x,y)–R(I(x,y)) (1)

As long as we set the size of RNA so that RNA

may not be fully contained in areas corresponding

to metal in the projection image, the D(x, y, R) fea-

ture space can be divided into three regions de-

pending on the value of D(x, y, R). A pixel value,

D, close to zero explains that the pixel is likely to

belong to non-metal since it obeys the RNA princi-

ple that a non-metal pixel is well approximated us-

ing the weighted average of its RNA pixels. A pixel

with either positive or negative D away from zero

can be considered an outlier that does not satisfy

the RNA principle. A pixel with positive D away
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(a) (b)

Fig. 3. Comparison of histograms: (a) Reconstructed image of projection image, (b) Reconstructed image

of pseudoPIS.

from zero is likely to be a pixel in metal area. The

RNA region of a pixel in metal area overlaps with

non-metal area of which pixel values are smaller

than those in metal region. In contrast, a pixel with

negative D away from zero is likely to belong to

non-metal area near metal. In this case, its corre-

sponding RNA region overlaps with metal area and

the weighted average of the RNA pixels gets larger

than the value of the pixel considered. In the cur-

rent implementation, the size of RNA mask is ex-

perimentally decided using various synthetic pro-

jection images created with the number of metal

pieces and their sizes varied. We are investigating

into an effective learning method that computes an

optimal size of RNA mask through training.

As previously mentioned, metal artifacts make

it hard to distinguish metal pixels from non-metal

pixels near metal that possibly belong to an air,

tissue or tooth region. Figs 3. (a) and (b) display

histograms of the reconstructed images of a pro-

jection image and its pseudoPIS, respectively. We

have traced down non-metal pixels near metal that

belong to air, tissue or tooth regions in order to

see where in the histogram they have ended up.

We have observed that, in the histogram of the re-

constructed image of pseudoPIS, metal and non-

metal pixels near metal get distributed on the op-

posite sides. This distribution stems from the fact

that distinction of metal and non-metal pixels near

metal in the histogram of pseudoPIS with opposite

signs carries over to the histogram of its re-

constructed image. This enables us to effectively

exclude non-metal pixels near metal and facilitates

the problem of metal area segmentation. In con-

trast, in Fig 3. (a) which displays the histogram

of a reconstructed image of the projection image

without employing the feature from equation (1),

non-metal pixels near metal that belong to air, tis-

sue or tooth regions get mixed with metal pixels.

4. EXPERIMENTAL RESULTS

For the experiments, we have chosen dental CT

images because their readability is poorer than

body CT images. Assuming the photon energy of

80KeV under typical dental CT imaging environ-

ment, we have modeled dental CT images with

metallic material normally used for dental prosthe-

ses such as implants or crown. The mass attenu-

ation coefficients [10] of Ag, Ni, Ti, and Al are used

for creating experimental images. A dental CT im-

age with three metallic prostheses is shown in Fig.

4 (a) with its ground truth segmentation in Fig.

4 (b).

Figs. 4 (c), (d), and (e) present the segmentation

results of PIS, RIS and HS (hybrid segmentation),

respectively, in the reconstructed image space. We

have chosen histogram thresholding for segmenta-

tion in order to show the effectiveness of the D(x,

y, R) feature that is computed from the RNA
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(a) Original CT image (b) MAS (ground truth)

(c) RIS, best threshold (d) PIS, best threshold (e) HS, Otsu’s thresholdDiff2 bw-RIS-best-objDiff1 bw-PIS-best-objDiff3 bw-HS-otsu-obj

(f) RIS, best threshold (g) PIS, best threshold (h) HS, Otsu’s threshold

Fig. 4. Visual comparison of MAS results in reconstructed image space: segmentation results (second

row) and error image (third row).

filtering. However, more complicated methods such

as Graph Cut can be employed. When the Otsu’s

threshold is used for RIS and PIS, the entire teeth

are decided as metal. Thus we have shown the best

segmentation results achievable for RIS and PIS

by manually searching for the optimal threshold for

each case. In order to clearly compare the segmen-

tation results, we have provided error images in

the third row of Fig. 4 that are obtained by differ-

encing between the ground truth and each seg-

mentation result. They indicate that the proposed

hybrid segmentation method in Fig. 4 (h) gives the

best result. The results for RIS (Fig. 4 (f)) and PIS

(Fig. 4 (g)) using the best thresholds show that

near-metal area is segmented as metal due to arti-

facts near metal.

5. CONCLUSIONS

This research has presented a novel feature

space useful for MAS in X-ray CT images. We

have shown how to make use of the RNA idea de-

veloped for projection image inpainting to create

the feature for MAS. It facilitates the segmentation

problem by distributing metal pixels and non-met-

al pixels near metal with opposite signs, and is ex-

pected to significantly contribute to the solution of

metal area segmentation in the presence of metal

artifacts. We are investigating into its extension

to the case cone-beam CT images.
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