DOI QR코드

DOI QR Code

Operator Exposure to Indoxacarb Wettable Powder and Water Dispersible Granule during Mixing/loading and Risk Assessment

Indoxacarb의 수화제 및 입상수화제 살포액 조제 시 농작업자의 노출량 측정 및 위해성 평가

  • Kim, Eunhye (Department of Agricultural Biotechnology, Seoul National University) ;
  • Hwang, Yon-Jin (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Suhee (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Hyeri (Department of Agricultural Biotechnology, Seoul National University) ;
  • Hong, Soonsung (National Institute of Agricultural Science and Technology) ;
  • Park, Kyung-Hun (National Institute of Agricultural Science and Technology) ;
  • Kim, Jeong-Han (Department of Agricultural Biotechnology, Seoul National University)
  • 김은혜 (서울대학교 농생명공학부) ;
  • 황연진 (서울대학교 농생명공학부) ;
  • 김수희 (서울대학교 농생명공학부) ;
  • 이혜리 (서울대학교 농생명공학부) ;
  • 홍순성 (농촌진흥청 국립농업과학원) ;
  • 박경훈 (농촌진흥청 국립농업과학원) ;
  • 김정한 (서울대학교 농생명공학부)
  • Received : 2012.10.31
  • Accepted : 2012.12.12
  • Published : 2012.12.31

Abstract

Exposure and risk assessments were conducted to evaluate the relative safety of mixing/loading work of indoxacarb between wettable powder (WP) and water dispersible granule (WG). Hand exposure was monitored using cotton gloves while inhalation exposure was measured using personal air monitor. Method validation for the exposure monitoring was established successfully through several experiments. Limit of determination and limit of quantitation were 0.25 and 1 ng, respectively. $R^2$ of calibration curve linearity was more than 0.9999 and reproducibility was 0.7-6. Recovery of indoxacarb from gloves, solid sorbent and glass fiber filter at three different levels was 81.5-108.8%. Trapping efficiency and breakthrough tests gave 981.5-108.8% of recovery. During mixing/loading procedure, hand exposure amount (75 percentile of 30 repetitions) for indoxacarb WP was 6 folds (459.8 mg/kg a.i) than that of WG (81.4 mg/kg a.i). This result indicates that WG has less drift than WP thanks to its granular type of formulation. Inhalation amount was $10^{-8}-10^{-7}%$ of spray mixture prepared and $10^{-4}-10^{-3}%$ of hand exposure. In inhalation case, no significant differences were observed between two formulations. Margin of safety was calculated for risk assessment using male Korean average body weight and acceptable operator exposure level as the important exposure factors. Mixing/loading procedures for both of the formulations were considered to be of least risk because calculated MOS values were more than 1.

Indoxacarb 수화제 및 입상수화제 살포액 조제 시 농작업자의 노출량 측정을하여 두 제형 간 노출 양상을 비교하였으며 위해성 평가를 실시하였다. 손 노출량 측정은 면 장갑을 사용하였고 호흡노출량은 personal air monitor를 이용하였으며, 노출량 측정을 위한 다양한 분석/시험방법을 검증하였다. 분석 기기의 검출한계는 0.25 ng, 정량한계는 1 ng로 설정하였고, 표준 검량선의 직선성은 $R^2$이 0.9999 이상이었으며, 분석재현성은 C.V값이 0.7~6.0이었다. 또한 3수준으로 수행한 노출 시료(장갑, 고체 흡착제, 유리섬유필터)에서 indoxacarb의 분석법의 회수율은 81.5-108.8% 이었고, 호흡 노출 실험의 검증 중에서 포집효율 및 파과실험 결과 90.4-112.0%의 회수율을 보였다. Indoxacarb 수화제 및 입상수화제 조제 시 30반복의 손 노출량의 75percentile 값은 수화제는 459.8 mg/kg a.i이며, 입상수화제는 81.4 mg/kg a.i로, 수화제가 입상수화제에 비해 6배 이상 노출이 되었다. 호흡노출량은 조제 약량의 $10^{-8}-10^{-7}%$, 손 노출량의 $10^{-4}-10^{-3}%$이었으며 호흡노출량은 수화제 및 입상수화제 사이의 유의성 있는 차이는 보이지 않았다. Indoxacarb의 위해성평가를 위한 margin of safety (MOS) 계산 시 중요한 노출 인자로서 한국인 남성 평균체중과 농작업자 노출 허용량을 사용하였다. 위해성 평가 결과 두 제형 모두 조제 작업 시 MOS가 1이상으로 위해성이 낮음을 확인하였다.

Keywords

References

  1. Calumpang, S. M. F. and M. J. B. Medina (1996) Applicator exposure to imidacloprid while spraying mangoes, Bulletin of Environmental Contamination and Toxicology. 57(5): 697-704. https://doi.org/10.1007/s001289900246
  2. Capri, E., R. Alberici, C. R. Glass, G. Minuto and M. Trevisan (1999), Potential operator exposure to procymidone in greenhouses, Journal of Agricultural and Food Chemistry, 47(10):4443-4449. https://doi.org/10.1021/jf990175w
  3. Cattani, M., K. Cena, J. Edwards and D. Pisaniello (2001) Potential dermal and inhalation exposure to chlorpyrifos in Australian pesticide workers, The Annals of Occupational Hygiene, 45(4):299-308. https://doi.org/10.1093/annhyg/45.4.299
  4. Chester, G. (2010) Worker Exposure: Methods and techniques, pp.1127-1137 ln Hayes' Handbook of Pesticide Toxicology (ed.W. J. Hayes), Elsevier.
  5. Choi, H., J. K. Moon, K. H. Liu, H. W. Park, Y. B. Ihm, B. S. Park and J. H. Kim (2006) Risk assessment of human exposure to cypermethrin during treatment of mandarin fields, Archives of Environmental Contamination and Toxicology. 50(3):437-442. https://doi.org/10.1007/s00244-005-1050-3
  6. Choi, Y. M., K. S. Ahn, I. C. Hwang and G. H. Kim (2004) Property and Mode of Action of Indoxacarb against Diamondback Moth, Plutellaxylostella (Lepidoptera: Plutellidae), Korean Journal of Applied Entomology. 43(4): 317-322.
  7. Davis, J. E., E. R. Stevens and D. C. Staiff (1983) Potential exposure of apple thinners to azinphosmethyl and comparison of two methods for assessment of hand exposure, Bulletin of Environmental Contamination Toxicology. 31(6):631-638. https://doi.org/10.1007/BF01606038
  8. Egea GonzzGon, F., M. Castro Cano, J. Mart, M. Vidal, C. Glass and M. Cruz MVidal (1999) Analytical method for assessing exposure of greenhouse applicators to procymidone by gas chromatography and whole body dosimetry, Chromatographia. 50(5):293-298. https://doi.org/10.1007/BF02490831
  9. Fenske, R. A., N. J. Simcox, J. E. Camp and C. J. Hines (1999) Comparison of three methods for assessment of hand exposure to azinphos-methyl (Guthion) during apple thinning, Applied Occupational and Environmental Hygiene 14(9): 618-623. https://doi.org/10.1080/104732299302422
  10. Hughes, E. A., A. Zalts, J. J. Ojeda, A. P. Flores, R. C. Glass and J. M. Montserrat (2006) Analytical method for assessing potential dermal exposure to captan, using whole body dosimetry, in small vegetable production units in Argentina, Pest Management Science. 62(9):811-818. https://doi.org/10.1002/ps.1232
  11. Hughes, E. A., A. P. Flores, L. M. Ramos, A. Zalts, C. R. Glass and J. M. Montserrat (2008) Potential dermal exposure to deltamethrin and risk assessment for manual sprayers: Influence of crop type, Science of The Total Environment, 391(1):34-40. https://doi.org/10.1016/j.scitotenv.2007.09.034
  12. Jang, J. Y., S. N. Jo, S. Kim, S. J. Kim and H. K. Cheong (2007) Inhalation rate. pp. 42-48, In Korean exposure factors handbook, Ministry of Environment, Korea.
  13. KCPA, Korea Crop Protection Association (2000) Agrochemical news magazine 21(9):30-32.
  14. KCPA, Korea Crop Protection Association (2012) Life and agrochemicals, 278, 22-25, Korea.
  15. Kim, E. H., H. R. Lee, H. Choi, J. K. Moon, S. S. Hong, M. H. Jeong, K.-H. Park, H. M. Lee and J.-H. Kim (2011) Methodology for Quantitative Monitoring of Agricultural Worker Exposure to Pesticides. The Korean Society of Pesticide Science. 15(4):507-528.
  16. Kim, E. H., J. K. Moon, H. Choi, S. M. Hong, D. H. Lee, H. M. Lee and J. H.-Kim (2012) Exposure and risk assessment of insecticide methomyl for applicator during treatment on apple orchard. Journal of the Korean Society for Applied Biological Chemistry 55:95-100. https://doi.org/10.1007/s13765-012-0016-1
  17. Machado-Neto, J. G., T. Matuo and Y. K. Matuo (1998) Efficiency of safety measures applied to a manual knapsack sprayer for paraquat application to maize (Zea mays L.), Archives of Environmental Contamination and Toxicology, 35(4):698-701. https://doi.org/10.1007/s002449900433
  18. Machado-Neto, J. G. (2001) Determination of safe work time and exposure control need for pesticide applicators, Bulletin of Environmental Contamination and Toxicology, 67(1): 20-26. https://doi.org/10.1007/s001280086
  19. Machera, K., M. Goumenou, E. Kapetanakis, A. Kalamarakis and C. R. Glass (2003), Determination of potential dermal and inhalation operator exposure to malathion in greenhouses with the whole body dosimetry method, Annals of Occupational Hygiene. 47(1):61-70. https://doi.org/10.1093/annhyg/mef097
  20. Ness, S. A. (1994) Clothing for dosimetry and protection. pp. 346-349, In Surface and dermal monitoring for toxic exposures, John Wiley & Sons Inc., Canada.
  21. Oliveira, M. L. and J. G. Machado-Neto (2003) Use of manganese as tracer in the determination of respiratory exposure and relative importance of exposure routes in the safety of pesticide applicators in citrus orchards, Bulletin of Environmental Contamination and Toxicology, 70(3):415- 421. https://doi.org/10.1007/s00128-003-0002-8
  22. Ramos, L. M., G. A. Querejeta, A. P. Flores, E. A. Hughes, A. Zalts and J. M. Montserrat (2010) Potential dermal exposure in greenhouses for manual sprayers: analysis of the mix/load, application and re-entry stages, Science of The Total Environment. 408(19):4062-4068. https://doi.org/10.1016/j.scitotenv.2010.05.020
  23. Ramwell, C. T., P. D. Johnson, A. B. A. Boxall and D. A. Rimmer (2005), Pesticide residues on the external surfaces of field crop sprayers: occupational exposure, Annals of Occupational Hygiene, 49(4):345-350. https://doi.org/10.1093/annhyg/meh101
  24. Tomlin, C. D. S. (2003) In The Pesticide Manual (13th), pp.572-573, British Crop Production Council, UK.
  25. Tuomainen, A., J. A. Kangas, W. J. A. Meuling and R. C. Glass (2002) Monitoring of pesticide applicators for potential dermal exposure to malathion and biomarkers in urine. Toxicology Letters. 134:125-132. https://doi.org/10.1016/S0378-4274(02)00181-9
  26. Vercruysse, F., S. Drieghe, W. Steurbaut and W. Dejonckheere (1999) Exposure assessment of professional pesticide users during treatment of potato fields, Pesticide Science, 55(4):467-473. https://doi.org/10.1002/(SICI)1096-9063(199904)55:4<467::AID-PS924>3.0.CO;2-#

Cited by

  1. Assessment of the Exposure of Workers to the Insecticide Imidacloprid during Application on Various Field Crops by a Hand-Held Power Sprayer vol.61, pp.45, 2013, https://doi.org/10.1021/jf403169t
  2. Evaluation for Application of IOM Sampler for Agricultural Farmer's Inhalation Exposure to Kresoxim-methyl and Fenthion vol.19, pp.3, 2015, https://doi.org/10.7585/kjps.2015.19.3.230
  3. Adhesion Amount of Acetamipride on Plant and the Pest Control Effect According to the Reduced Application Amount vol.19, pp.3, 2015, https://doi.org/10.7585/kjps.2015.19.3.317
  4. Measurement of Operator Exposure During Treatment of Fungicide Difenoconazole on Grape Orchard vol.35, pp.4, 2016, https://doi.org/10.5338/KJEA.2016.35.4.39
  5. Risk Assessment of Operator Exposure During Treatment of Fungicide Dithianon on Apple Orchard vol.37, pp.4, 2018, https://doi.org/10.5338/KJEA.2018.37.4.40
  6. 수박 시설재배에서 살충제 Acetamiprid 사용 시 전신노출법에 의한 농작업자의 노출 및 위해성평가 vol.18, pp.4, 2012, https://doi.org/10.7585/kjps.2014.18.4.247
  7. 전신복장법을 이용한 농약 조제 및 살포 과정 중 살충제 Imidacloprid에 대한 사과 과수원 농작업자의 노출 평가 vol.20, pp.3, 2012, https://doi.org/10.7585/kjps.2016.20.3.271
  8. 화학사고 주변 지역 거주자의 보건환경 관리를 위한 건강위해성 평가 방법 개발에 관한 연구 vol.28, pp.1, 2012, https://doi.org/10.15269/jksoeh.2018.28.1.1
  9. A Study on the Farmers’ Safety Management Levels according to Their Pesticide Exposure by Farming Type in South Korea vol.29, pp.4, 2012, https://doi.org/10.7856/kjcls.2018.29.4.617
  10. Risk Assessment on Exposure of Acetamiprid for Agricultural Worker in Greenhouse vol.24, pp.3, 2012, https://doi.org/10.7585/kjps.2020.24.3.247