DOI QR코드

DOI QR Code

Degradation in Steels: Transformation Plasticity

  • Cho, Yi-Gil (Department of Materials Science and Engineering and Center for Iron & Steel Research, RIAM, Seoul National University) ;
  • Han, Heung-Nam (Department of Materials Science and Engineering and Center for Iron & Steel Research, RIAM, Seoul National University)
  • 투고 : 2011.07.07
  • 심사 : 2011.07.28
  • 발행 : 2012.01.31

초록

Super-plastic deformation that originates from transformation plasticity has favorable aspects for steels with improved strength and ductility. However, it also causes undesirable deformation of products or specimens, leading to their degradation. This article reviews recent investigations of transformation plasticity. A combination of newly suggested models, numerical analyses, and novel experiments has attempted to reveal the mechanism. Since the nature of the transformation plasticity is still unclear, there are significant challenges still to be solved. Fundamental understanding of transformation plasticity will be essential for the development of advanced steels.

키워드

참고문헌

  1. H. N. Han, C. G. Lee, C.-S. Oh, T.-H. Lee, and S.-J. Kim, "A Model for Deformation Behavior and Mechanically Induced Martensitic Transformation of Metastable Austenitic Steel," Acta Mater., 52 5203-14 (2004). https://doi.org/10.1016/j.actamat.2004.07.031
  2. K. Tao, H. Choo, H. Li, B. Clausen, J.-E. Jin, and Y.-K. Lee, "Transformation-induced Plasticity in an Ultrafine-grained steel: an in Situ Neutron Diffraction Study," Appl. Phys. Lett., 90 101911 (2007). https://doi.org/10.1063/1.2711758
  3. G. B. Olson and M. Cohen, "Stress-assisted Isothermal Martensitic Transformation: Application to TRIP Steels," Metall. Trans. A, 13 1907-14 (1982). https://doi.org/10.1007/BF02645934
  4. H.-H. Cho, Y.- G. Cho, Y.-R. Im, J. K. Lee, J.-H. Kwak, and H. N. Han, "A Finite Element Analysis for Asymmetric Contraction after Coiling of Hot-rolled Steel," J. Mater. Proc. Tech., 210 907-13 (2010). https://doi.org/10.1016/j.jmatprotec.2010.02.003
  5. T. Wu, M. Coret, and A. Combescure, "Numerical Simulation of Welding Induced Damage and Residual Stress of Martensitic Steel 15-5PH," Inter. J. Solids & Structures, 45 2973-89 (2008).
  6. Y.-G. Cho, Y.-R. Im, J. K. Lee, D.-W. Suh, S.-J. Kim, and H. N. Han, "A Finite Element Modeling for Dilatometric Nonisotropy in Steel," Metall. Mater. Trans. A, 42 2094-106 (2011). https://doi.org/10.1007/s11661-010-0598-3
  7. Y.-G. Cho, D.-W. Suh, J. K. Lee, and H. N. Han, "Finite Element Analysis of Dimensional Non-isotropy During Phase Transformation in Microstructurally Banded Steel," Scripta Mater., 65 569-72 (2011). https://doi.org/10.1016/j.scriptamat.2011.06.012
  8. T.-H. Ahn, C.-S. Oh, D. H. Kim, K. H. Oh, H. Bei, E. P. George, and H. N. Han, "Investigation of Strain-induced Martensitic Transformation in Metastable Austenite using Nanoindentation," Scripta Materialia, 63 540-3 (2010). https://doi.org/10.1016/j.scriptamat.2010.05.024
  9. G. W. Greenwood and R. H. Johnson, "The Deformation of Metals Under Small Stresses During Phase Transformations," Proc. R. Soc. (Lond) A, 283 403-22 (1965). https://doi.org/10.1098/rspa.1965.0029
  10. J. B. Leblond, G. Mottet, and J. C. Devaux, "A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformation: I Derivation of General Relations," J. Mech. Phys. Solids, 34 395-409 (1986). https://doi.org/10.1016/0022-5096(86)90009-8
  11. J. B. Leblond, "Mathematical Modeling of Transformation Plasticity in Steels-II. Coupling with Strain Hardening Phenomena," Int. J. Plast., 5 573-91 (1989). https://doi.org/10.1016/0749-6419(89)90002-8
  12. L. Taleb, N. Cavallo, and F. Waeckel, "Experimental Analysis of Transformation Plasticity," Int. J. Plast., 17 1-20 (2001). https://doi.org/10.1016/S0749-6419(99)00090-X
  13. L. Taleb and F. Sidoroff, "A Micromechanical Modeling of the Greenwood-Johnson Mechanism in Transformation Induced Plasticity," Int J. Plast., 19 1821-42 (2003). https://doi.org/10.1016/S0749-6419(03)00020-2
  14. L. Taleb and S. Petit, "New Investigations on Transformation Induced Plasticity and its Interaction with Classical Plasticity," Int. J. Plast., 22 110-30 (2006). https://doi.org/10.1016/j.ijplas.2005.03.012
  15. F. D. Fischer and G. Reisner, "A Criterion for the Martensitic Transformation of a Microregion in an Elastic-plastic Material," Acta Mater., 46 2095-102 (1998). https://doi.org/10.1016/S1359-6454(97)00374-1
  16. F. D. Fischer, T. Antretter, F. Azzouz, G. Cailletaud, A. Pineau, K. Tanaka, and K. Nagayama, "The Role of Backstress in Phase Transforming Steels," Arch. Mech., 52 569-88 (2000).
  17. F. D. Fischer, G. Reisner, E. Werner, and K. Tanaka, "A New View on Transformation Induced Plasticity (TRIP)," Int. J. Plast., 16 723-48 (2000). https://doi.org/10.1016/S0749-6419(99)00078-9
  18. R. Mahnken, A. Schneidt, and T. Antretter, "Macro Modeling and Homogenization for Transformation Induced Plasticity of a Low-alloy Steel," Int. J. Plast., 25 183-204 (2009). https://doi.org/10.1016/j.ijplas.2008.03.005
  19. C. L. Magee, "Transformation Kinetics, Microplasticity and Ageing of Martensite in Fe-3l-Ni," Ph.D. Thesis, Carnegie Institute of Technology University, Pittsburgh, PA, USA, 1966.
  20. G. B. Olson and M. Cohen, "Kinetics of Strain-induced Martensitic Nucleation," Metall. Trans. A, 6 791-5 (1975). https://doi.org/10.1007/BF02672301
  21. R. G. Stringfellow, D. M. Parks, and G. B. Olson, "A constitutive Model for Transformation Plasticity Accompanying Straininduced Martensitic Transformations in Metastable Austenitic Steels," Acta Metall. Mater., 40 1703-16 (1992). https://doi.org/10.1016/0956-7151(92)90114-T
  22. Y. Tomita and T. Iwamoto, "Constitutive Modeling of TRIP Steel and its Application to the Improvement of mEchanical Properties," Int. J. Mech. Sci., 37 1295-305 (1995). https://doi.org/10.1016/0020-7403(95)00039-Z
  23. Y. Tomita and T. Iwamoto, "Computational Prediction of Deformation Behavior of TRIP Steels Under Cyclic Loading," Int. J. Mech. Sci., 43 2017-34 (2001). https://doi.org/10.1016/S0020-7403(01)00026-1
  24. Y. Tomita and Y. Shibutani, "Estimation of Deformation Behavior of TRIP Steels-smooth/ringed-notched Specimens Under Monotonic and Cyclic Loading," Int. J. Plast., 16 769-89 (2000). https://doi.org/10.1016/S0749-6419(99)00080-7
  25. F. Marketz and F. D. Fischer, "A Mesoscale Study on the Thermodynamic Effect of Stress on Martensitic Transformation," Metall. Mater. Trans. A, 26, 267-78 (1995). https://doi.org/10.1007/BF02664665
  26. A. V. Idesman, V. I. Levitas, and E. Stein, "Elastoplastic Materials with Martensitic Phase Transition and Twinning at Finite Strains: Numerical Solution with the Finite Element Method," Comput. Methods Appl. Mech., 173, 71-98 (1999). https://doi.org/10.1016/S0045-7825(98)00258-8
  27. V. I. Levitas, A. V. Idesman and D. Preston, "Microscale Simulation of Evolution of Martensitic Microstructure," Phys. Rev. Lett., 93 105701-1 (2004). https://doi.org/10.1103/PhysRevLett.93.105701
  28. V. I. Levitas and I. B. Ozsoy, "Micromechanical Modeling of Stress-induced Phase Transformations. Part I. Thermodynamics and Kinetics of Coupled Interface Propagation and Reorientation," Int. J. Plast., 25 239-80 (2009). https://doi.org/10.1016/j.ijplas.2008.02.004
  29. V. I. Levitas and I. B. Ozsoy, "Micromechanical Modeling of Stress-induced Phase Transformations. Part 2. Computational Algorithms and Examples," Int. J. Plast., 25 546-83 (2009). https://doi.org/10.1016/j.ijplas.2008.02.005
  30. S. Turteltaub, and A. S. J. Suiker, "Transformation-induced Plasticity in Ferrous Alloys," J. Mech. Phys. Solids, 53 1747-88 (2005). https://doi.org/10.1016/j.jmps.2005.03.004
  31. V. G. Kouznetsova and M. G. D. Geers, "A Multi-scale Model of Martensitic Transformation Plasticity," Mech. Mater., 40 641-57 (2008). https://doi.org/10.1016/j.mechmat.2008.02.004
  32. P. J. Jacques, Q. Furnemont, F. Lani, T. Pardoen, and F. Delannay, "Multiscale Mechanics of TRIP-assisted Multiphase Steels: I. Characterization and Mechanical Testing," Acta Mater., 55 3681-93 (2007). https://doi.org/10.1016/j.actamat.2007.02.029
  33. V. I. Levitas and D. -W. Lee, "Athermal Resistance to an Interface Motion in Phase Field Theory of Microstructure Evolution," Phys. Rev. Lett., 99 245701 (2007). https://doi.org/10.1103/PhysRevLett.99.245701
  34. H. N. Han, J. K. Lee, D.-W. Suh, and S.-J. Kim, "Diffusioncontrolled Transformation Plasticity of Steel Under Externally Applied Stress," Phil. Mag., 87 159-76 (2007). https://doi.org/10.1080/14786430600953731
  35. K. Kitazono, E. Sato, and K. Kuribayashi, "Unified Interpretation of Internal Stress Superplasticity Models Based on Thermally- Activated Kinetics," Acta Mater., 47 1653-60 (1999). https://doi.org/10.1016/S1359-6454(98)00431-5
  36. C. Schuh and D. C. Dunand, "Non-isothermal Transformation-mismatch Plasticity: Modeling and Experiments on Ti-6Al-4V," Acta Mater., 49 199-210 (2001). https://doi.org/10.1016/S1359-6454(00)00318-9
  37. H. N. Han, K. J. Lee, and S.-J. Kim, "An Observation of Permanent Strain During Recrystallization and Growth of Steel Under Externally Applied Stress," Mater. Lett., 59 158-61 (2005). https://doi.org/10.1016/j.matlet.2004.07.030
  38. J.-H. Kang, D.-W. Suh, J.-Y. Cho, K. H. Oh, and H. -C. Lee, "Effect of External Stress on the Orientation Distribution of Ferrite," Scripta Mater., 48 91-5 (2003). https://doi.org/10.1016/S1359-6462(02)00352-4
  39. D.-W. Suh, S.-J. Kim, and H. N. Han, "Effect of External Stress During Transformation on Orientation Characteristics of Ferrite," CAMP-ISIJ, 18 1331-4 (2005).
  40. R. L. Coble, "Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts," J. Appl. Phys., 32 793-9 (1961). https://doi.org/10.1063/1.1736108
  41. P. Zwigl and D. C. Dunand, "A Non-linear Model for Internal Stress Superplasticity," Acta Mater., 45 5285-94 (1997). https://doi.org/10.1016/S1359-6454(97)00186-9
  42. H. N. Han and D.-W. Suh, "A Model for Transformation Plasticity During Bainite Transformation of Steel Under External Stress," Acta Mater., 51 4907-17 (2003). https://doi.org/10.1016/S1359-6454(03)00333-1
  43. D. P. Koistinen and R. E. Marburger, "A General Equation Prescribing the Extent of the Austenite-martensite Transformation in Pure Iron-carbon Alloys and Plain Carbon Steels," Acta Metall., 7 59-60 (1959). https://doi.org/10.1016/0001-6160(59)90170-1
  44. J. R. Patel and M. Cohen, "Criterion for the Action of Applied Stress in the Martensitic Transformation," Acta Metall., 1 531-8 (1953). https://doi.org/10.1016/0001-6160(53)90083-2
  45. D.-W. Suh, C.-S. Oh, H. N. Han, and S. -J. Kim, "Dilatometric Analysis of Austenite Decomposition Considering the Effect of Non-isotropic Volume Change," Acta Mater., 55 2659-69 (2007). https://doi.org/10.1016/j.actamat.2006.12.007
  46. T. A. Kop, J. Sietsma, and S. Van der Zwaag, "Dilatometric Analysis of Phase Transformation in Hypo-eutectoid Steels," J. Mater. Sci., 36 519-26 (2001). https://doi.org/10.1023/A:1004805402404
  47. R. A. Jaramillo, M. T. Lusk, and M. C. Mataya, "Dimensional Anisotropy During Phase Transformations in a Chemically Banded 5140 Steel. Part I: Experimental Investigation," Acta Mater., 52 851-8 (2004). https://doi.org/10.1016/j.actamat.2003.11.017
  48. R. A. Jaramillo and M. T. Lusk, "Dimensional Anisotropy During Phase Transformations in a Chemically Banded 5140 Steel. Part II: Modeling," Acta Mater., 52 859-67 (2004). https://doi.org/10.1016/j.actamat.2003.10.020
  49. D.-W. Suh, C.-S. Oh, H. N. Han, and S.-J. Kim, "Dilatometric Analysis of Phase Fraction During Austenite Decomposition into Banded Microstructure in Low-carbon Steel," Metall. Mater. Trans. A, 38 2963-73 (2007). https://doi.org/10.1007/s11661-007-9361-9
  50. S.-J. Park, B.-H. Hong, S. C. Baik, and K. H. Oh, "Finite Element Analysis of Hot Rolled Coil Cooling," ISIJ Int., 38 1262-9 (1998). https://doi.org/10.2355/isijinternational.38.1262
  51. A. Saboonchi and S. Hassanpour, "Heat Transfer Analysis of Hot-rolled Coils in Multi-stack Storing," J. Mater. Process. Technol., 182101-6 (2007). https://doi.org/10.1016/j.jmatprotec.2006.07.017
  52. H. N. Han, J. K. Lee, H. J. Kim, and Y. -S. Jin, "A model for Deformation, Temperature and Phase Transformation Behavior of Steels on Run-out Table in Hot Strip Mill," J. Mater. Process. Technol., 128 216-25 (2002). https://doi.org/10.1016/S0924-0136(02)00454-5
  53. C. M. Park, J. T. Choi, H. K. Moon, and G. J. Park, "Thermal Crown Analysis of the Roll in the Strip Casting Process," J. Mater. Process. Technol., 209 3714-23 (2009). https://doi.org/10.1016/j.jmatprotec.2008.08.029
  54. S. H. Lee, J.-Y. Kang, H. N. Han, K. H. Oh, H.-C. Lee, D.-W. Suh, and S.-J. Kim, "Variant Selection in Mechanically-induced Martensitic Transformation of Metastable Austenitic Steel," ISIJ Inter., 45 1217-9 (2005). https://doi.org/10.2355/isijinternational.45.1217
  55. Y.-G. Cho, J.-Y. Kim, P.-R. Cha, D.-W. Suh, J. K. Lee, and H. N. Han, "Analysis of Transformation Plasticity in Steel using a Finite Element Method Coupled with a Phase Field Model," (2011), to be published.