DOI QR코드

DOI QR Code

Oxygen Potential Gradient Induced Degradation of Oxides

  • Martin, Manfred (Institute of Physical Chemistry, RWTH Aachen University)
  • Received : 2011.12.14
  • Accepted : 2012.01.12
  • Published : 2012.01.31

Abstract

In many applications of functional oxides originally homogeneous materials are exposed to gradients in the chemical potential of oxygen. Prominent examples are solid oxide fuel cells (SOFCs) or oxygen permeation membranes (OPMs). Other thermodynamic potential gradients are gradients of electrical potential, temperature or uni-axial pressure. The applied gradients act as generalized thermodynamic forces and induce directed fluxes of the mobile components. These fluxes may lead to three basic degradation phenomena of the materials, which are kinetic demixing, kinetic decomposition, and morphological instabilities.

Keywords

References

  1. B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 345-52 (2001). https://doi.org/10.1038/35104620
  2. J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, and J.C. Diniz da Costa, "Mixed Ionic.electronic Conducting (MIEC) Ceramic-based Membranes for Oxygen Separation," J. Membrane Science, 320 13-41 (2008). https://doi.org/10.1016/j.memsci.2008.03.074
  3. H. J. Grabke and M. Schutze (Eds.), Oxidation of Intermetallics, Wiley-VCH, Weinheim, 1997.
  4. U. Koops, D. Hesse, and M. Martin, "High-Temperature Oxidation of CoGa: Influence of the Crystallographic Orientation on the Oxidation Rate," J. Mater. Res., 17 2489-98 (2002). https://doi.org/10.1557/JMR.2002.0363
  5. E. Ryshkewitch and D. W. Richerson, Oxide Ceramics, Academic, Orlando, 1985.
  6. H. Kishi, Y. Mizuno, and H. Chazono, "Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives," Jpn. J. Appl. Phys., 42 1-15 (2003). https://doi.org/10.1143/JJAP.42.1
  7. M. Martin, "Transport and Degradation in Transition Metal Oxides in Chemical Potential Gradients," Materials Science Reports, 7 1-86 (1991). https://doi.org/10.1016/0920-2307(91)90012-C
  8. M. Martin, "Materials in Thermodynamic Potential Gradients," J. Chem. Thermodynamics, 35 1291-1308 (2003). https://doi.org/10.1016/S0021-9614(03)00094-6
  9. A. Hammou and J. Guindet, "Solid Oxide Fuel Cells," pp 407-443 in The CRC Handbook of Solid State Electrochemistry. Ed. by P. J. Gellings and H. J. M. Bouwmeester, CRC Press, Boca Raton, 1996.
  10. S.R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.
  11. J. Janek, M. Martin, and H.-I. Yoo, "Electrotransport in Ionic Crystals: I. Application of Liquid Electrolyte Theory," Ber. Bunsenges. Phys. Chem., 98 655-664 (1994). https://doi.org/10.1002/bbpc.19940980503
  12. O. Teller and M. Martin, "Kinetic demixing of (CoNi)O in an Electrical Field," Solid State Ionics, 101-103 475-478 (1997). https://doi.org/10.1016/S0167-2738(97)84071-4
  13. O. Teller and M. Martin, "Steady State Demixing of Oxid Solid Solutions in an Electrical Potential Gradient," Electrochemistry, 68 294-297 (2000).
  14. H. Schmalzried, W. Laqua, and P.L. Lin, "Crystallic Oxide Solid Solutions in Oxygen Potential Gradients," Z. Naturforsch., 34a 192-99 (1979).
  15. H.-I. Yoo, J.-H. Lee, M. Martin, J. Janek, and H. Schmalzried, "Experimental Evidence of the Interference Between Ionic and Electronic Flows in an Oxide with Prevailing Electronic Conduction," Solid State Ionics, 67 317-22 (1994). https://doi.org/10.1016/0167-2738(94)90024-8
  16. A.B. Lidiard, "Impurity Diffusion in Crystals (Mainly Ionic Crystals with the Sodium Chloride Structure)," Phil. Mag., 46 1218-37 (1955). https://doi.org/10.1080/14786441108520633
  17. A. R. Allnatt and A. B. Lidiard, "Statistical Theories of Atomic Transport in Crystalline Solids," Rep. Prog. Phys., 50 373-472 (1987). https://doi.org/10.1088/0034-4885/50/4/001
  18. M. Martin and R. Schmackpfeffer, "Demixing of Doped Oxides: Influence of Defect Interactions," Solid State Ionics, 72 67-71 (1994). https://doi.org/10.1016/0167-2738(94)90126-0
  19. R. Schmackpfeffer and M. Martin, "Tracer Diffusion and Defect Structure in Ga-doped CoO," Phil. Mag. A, 68 747-65 (1993). https://doi.org/10.1080/01418619308213995
  20. H. Schmalzried and W. Laqua, "Multicomponent Oxides in Oxygen Potential Gradients," Oxid. Metals, 15 339-53 (1981). https://doi.org/10.1007/BF01058834
  21. U. Brinkmann and W. Laqua, "Decomposition of Fayalite ($Fe_2SiO_4$) in an Oxygen Potential Gradient at 1418 K," Phys. Chem. Minerals, 12 283-90 (1985). https://doi.org/10.1007/BF00310341
  22. M. Martin, "Cation Demixing in an Oxygen Ion Conductor exposed to an Oxygen Potential Gradient," pp 308-316, in SOFC-VI, PV 1999-19, The Electrochemical Society Proceedings Series, Ed. by S. C. Singhal, Pennington, NJ, 1999.
  23. M. Martin, "Electrotransport and Demixing in Oxides," Solid State Ionics, 136-137 331-337 (2000). https://doi.org/10.1016/S0167-2738(00)00492-6
  24. M. Kilo, M.A. Taylor, Ch. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, "Cation self-diffusion of $^{44}Ca$, $^{88}Y$ and $^{96}Zr$ in Single-crystalline Calcia- and Yttria-doped Zirconia," J. Appl. Phys., 94 7547-52 (2003). https://doi.org/10.1063/1.1628379
  25. O. Schulz, M. Martin, C. Argirusis, and G. Borchardt, "Cation Tracer Diffusion of $^{138}La$, $^{84}Sr$ and $^{25}Mg$ in Polycrystalline $La_{0.9}Sr_{0.1}Ga_{0.9}Mg_{0.1}O_3$," Phys. Chem. Chem. Phys., 5 2308-13 (2003). https://doi.org/10.1039/b301882m
  26. N. H. Menzler, F. Tietz, S. Uhlenbruck, H. P. Buchkremer, and D. Stoever, "Materials and Manufacturing Technologies for Solid Oxide Fuel Cells," J. Mater. Sci., 45 3109-135 (2010). https://doi.org/10.1007/s10853-010-4279-9
  27. S. Diethelm, J. Sfeir, F. Clemens, J. van Herle, and D. Favrat, "Planar and Tubular Perovs-kite-type Membrane Reactors for the Partial Oxidation of Methane to Syngas," J. Solid State Electrochem., 8 611-17 (2004).
  28. B. Wang, B. Zydorczak, D. Poulidi, I.S. Metcalfe, and K. Li, "A Further Investigation of the Kinetic Demixing/decomposition of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Oxygen Separation Membranes," J. Membrane Science, 369 526-35 (2011). https://doi.org/10.1016/j.memsci.2010.12.040
  29. M. Martin and H. Schmalzried, "Cobaltous Oxide in an Oxygen Potential Gradient: Morphological Stability of the Phase Boundaries," Ber. Bunsenges. Phys. Chem., 89 124-30 (1985). https://doi.org/10.1002/bbpc.19850890209
  30. P. Tigelmann and M. Martin, "Monte Carlo Simulation of Surface Structures During Oxide Reduction," Physica A, 191 240-47 (1992). https://doi.org/10.1016/0378-4371(92)90533-V
  31. F.A. Nicols, "Kinetics of Diffusional Motion of Pores in Solids," J. Nucl. Mater., 30 143-65 (1969). https://doi.org/10.1016/0022-3115(69)90176-7

Cited by

  1. Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites vol.135, pp.21, 2013, https://doi.org/10.1021/ja3125349
  2. Gas Humidification Impact on the Properties and Performance of Perovskite-Type Functional Materials in Proton-Conducting Solid Oxide Cells pp.1616301X, 2018, https://doi.org/10.1002/adfm.201802592