SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES

SANG CHEOL LEE and REZVAN VARMAZYAR

Abstract. Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever $I^nK \subseteq Q$, where $I \subseteq h(R)$, n is a positive integer, and $K \subseteq h(M)$, then $IK \subseteq Q$. We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if $\text{grad}(Q) \cap h(M) = Q \cap h(M)$. Furthermore if M is finitely generated, then we prove that every proper graded submodule of M is contained in a graded semiprime submodule of M. A proper graded submodule Q of M is said to be almost semiprime if

\[
(\text{grad}(Q) \cap h(M)) \setminus (\text{grad}(0_M) \cap h(M)) = (Q \cap h(M)) \setminus (\text{grad}(0_M) \cap Q \cap h(M)).
\]

Let K, Q be graded submodules of M. If K and Q are almost semiprime in M such that $Q + K \neq M$ and $Q \cap K \subseteq M_g$ for all $g \in G$, then we prove that $Q + K$ is almost semiprime in M.

1. Introduction

Let G be a group. Then we define a G-graded ring R and a G-graded module over R in the same way as in [2], [3], and [5]. The notations which the authors use are slightly different but basically the same.

Throughout this paper G is a group, R is a G-graded commutative ring with identity and M is a G-graded module over R. From now on, by graded we mean G-graded, unless otherwise indicated.

Lemma 1.1. Let R be a graded ring.

(i) If a and b are graded ideals of R, then $a + b$, $a \cap b$, and ab are graded ideals of R.
(ii) If a is an element of $h(R)$, then the cyclic ideal aR of R is graded.

Received April 27, 2011; Revised June 21, 2011.
2010 Mathematics Subject Classification. 13C13, 13A02, 16W50.
Key words and phrases. graded multiplication module, semiprime submodule, almost semiprime.

©2012 The Korean Mathematical Society

435
Let $M = \oplus_{g \in G} M_g$ be a graded R-module. Let N be a submodule of M. The factor R-module M/N becomes a G-graded module over R with g-component $(M/N)_{g} = (M_{g} + N)/N$ for $g \in G$. A submodule N of M is called to be graded if $N = \oplus_{g \in G} N_{g}$ where $N_{g} = N \cap M_{g}$ for $g \in G$. Clearly, 0 is a graded submodule of M.

If N and K are submodules of an R-module M, the set of all elements $r \in R$ satisfying $rK \subseteq N$ becomes an ideal of R and is denoted by $(N :_{R} K)$ as usual.

Lemma 1.2. Let R be a graded ring and M be a graded R-module.

(i) If N and K are graded submodules of M, then $N + K$ and $N \cap K$ are graded submodules of M.

(ii) If a is an element of $h(R)$ and x is an element of $h(M)$, then aM and Rx are graded submodules of M.

(iii) If N is a graded submodule of M and K is a graded submodule of M, then $(N :_{R} K)$ is a graded ideal of R.

Proof. Clearly, (i) holds. See [3, Lemma 2.2] for (ii). For the proof of (iii), see [2, Lemma 2.1] and [5, Lemma 1(ii)]. We give a proof of (iii) for our record.

To show that $(N :_{R} K)$ is a graded ideal of R, let $I = (N :_{R} K)$. We show $I = \oplus_{g \in G} I_{g}$. For all $g \in G$, $I_{g} = I \cap R_{g} \subseteq I$. Hence $\oplus_{g \in G} I_{g} \subseteq I$. Conversely, let x be any element of I. Since R is graded, there exist $g_{1}, g_{2}, \ldots, g_{n} \in G$ such that $x = \sum_{j=1}^{n} x_{g_{j}}$. To show that $I \subseteq \oplus_{g \in G} I_{g}$, it suffices to show that $x_{g_{j}} \in I$ since then $x_{g_{j}} \in R_{g_{j}} \cap I \subseteq I_{g_{j}}$. In turn, it suffices to show that $x_{g_{j}} K \subseteq N$.

Since K is graded, $xK \subseteq N$, and N is graded, we have
\[
x_{g_{j}} K = x_{g_{j}} (\oplus_{h \in G} K_{h}) = \oplus_{h \in G} x_{g_{j}} K_{h} \subseteq \oplus_{h \in G} (xK)_{g_{j} h} \subseteq \oplus_{h \in G} N_{g_{j} h} \subseteq N,
\]
as required. \square

Corollary 1.3. Let R be a graded ring. If a and b are graded ideals of R, then $(a :_{R} b)$ is a graded ideal of R.

Let R be a graded ring and M be a graded R-module. We recall that a proper graded submodule P of M is prime if whenever $rm \in P$, where $r \in h(R)$ and $m \in h(M)$, then either $r \in (P :_{R} M)$ or $m \in P$.

Definition 1.4. Let R be a graded ring and M be a graded R-module. A proper graded submodule Q of M is semiprime if whenever $I^{n} K \subseteq Q$, where $I \subseteq h(R)$, n is a positive integer, and $K \subseteq h(M)$, then $IK \subseteq Q$.

Remark 1.5. It is easy to check that a proper graded ideal I of a graded ring R is semiprime if and only if whenever $x^{t} y \in I$, where $x, y \in h(R)$ and t is a positive integer, then $xy \in I$.

Proposition 1.6. Let R be a graded ring and M be a graded R-module. Then every graded prime submodule of M is semiprime. Moreover, every graded prime ideal of R is semiprime.
Proof. Assume that $I^n K \subseteq N$, where n is a positive integer, $I \subseteq h(R)$ and $K \subseteq h(M)$. Now, since N is a graded prime, we have either $I \subseteq (N : M) \subseteq (N : K)$ or $I^{n-1} K \subseteq N$. In the first case $IK \subseteq N$ and we are done. If $I^{n-1} K \subseteq N$, then $I \subseteq (N : M)$ or $I^{n-2} K \subseteq N$. In this way we have $IK \subseteq N$. Hence N is a graded semiprime submodule of M. \qed

For basic properties of a multiplication module one may refer to [1], [4] and [6].

A graded R-module M is said to be a graded multiplication module if for every graded submodule N of M, there exists a graded ideal a of R such that $N = aM$. Let M be a graded R-module. Assume that M is a graded multiplication module. If N and K are graded submodules of M, then there exist graded ideals a and b of R such that $N = aM$ and $K = bM$. Then the product of N and K is defined to be $(ab)M$ and is denoted by $N \cdot K$. It is well-known in [1, Theorem 3.4] and [5, Theorem 4] that the product is well-defined. In fact, ab is a graded ideal of R by Lemma 1.1 and $N \cdot K$ is independent of the choices of a and b. Also, for every positive integer k, N^k is defined to be

$$k \text{ times } \overbrace{N \cdot N \cdots N}.$$

Let R be a graded ring and M be a graded multiplication module over R. The graded radical of a graded submodule N of M is the set of all elements m of M such that $(Rm)^k \subseteq N$ for some positive integer k and is denoted by grad(N).

Remark 1.7. There were several authors who would like to define the product $x \cdot y$ of two elements x and y of M to be $Rx \cdot Ry$ and then they used the notation “$x^n \subseteq N$ for some positive integer n” in their papers, such as in [1, Theorem 3.13] and in [5, Corollary 4 to Theorem 12]. If $n = 1$, then $x \subseteq N$. This does not make sense, because $x \in M$. Hence it is natural not to define the product of two elements of M. However, we define the product of two submodules of M as in the second paragraph just posterior to the proof of Proposition 1.6.

Let R be a graded ring and M be a graded multiplication module over R. A graded submodule N of M is called nilpotent if $N^t = 0$ for some positive integer t. If a graded submodule N of M is nilpotent, then grad$(0) = \text{grad}(N)$.

A nonempty subset S of M is said to be multiplicatively closed if $(Rx)^n \cap S \neq \emptyset$ for each positive integer n and each $x \in S$.

The present paper will proceed as follows. Let R be a graded ring and M be a graded multiplication module over R.

In Section 2, we characterize graded semiprime submodules of M as follows.

(1) (Theorem 2.1 and its corollary) The following ten statements are equivalent for a proper graded submodule P of M.

(i) P is semiprime.
(ii) If $(Rx)^n \subseteq P$, where $x \in h(M)$ and n is a positive integer, then $x \in P$.
(iii) If $K^n \subseteq P$, where K is a graded submodule of M and n is a positive integer, then $K \subseteq P$.
(iv) If L is a graded submodule of M such that $P \subseteq L \subseteq M$, then $(P :_R L)$ is a graded semiprime ideal of R.
(v) $(P :_R M)$ is a graded semiprime ideal of R.
(vi) $\text{grad}(P) = P$.
(vii) If $Rx \cdot Ry \subseteq P$, where $x, y \in h(M)$, then $Rx \cap Ry \subseteq P$.
(viii) The factor R-module M/P has no nonzero nilpotent submodule.
(ix) There exits a graded semiprime ideal p of R with $(0 :_R M) \subseteq p$ such that $P = pM$.
(x) $M \setminus P$ is multiplicatively closed.

Moreover, if M is regular, then we show that every proper graded submodule of M is semiprime.

We give an example showing that the condition “M being a multiplication module” cannot be omitted.

Using the result above, we show that the three statements are true.

(2) (Theorem 2.6) If K is a graded submodule of M and S is a multiplicatively closed subset of M such that $K \cap S = \emptyset$, then there is a graded semiprime submodule P of M which is maximal with respect to the properties that $K \subseteq P$ and $P \cap S = \emptyset$.

(3) (Proposition 2.8) If N is a graded semiprime submodule of M, then it contains a minimal graded semiprime submodule.

(4) (Theorem 2.9) If N is a proper graded submodule of M and M is finitely generated, then there exists a graded semiprime submodule of M that contains N.

In Section 3, we define an almost semiprime submodule of M.

(5) (Theorem 3.5) Let Q, K be graded submodules of M. If Q and K are almost semiprime in M such that $Q + K \neq M$ and $Q \cap K \subseteq M_g$ for all $g \in G$, then we prove that $Q + K$ is almost semiprime in M.

2. Semiprime submodules

In this section, we deal with graded multiplication modules over graded rings. We define a semiprime submodule of a graded multiplication module over a graded ring to characterize it. And then we discuss several properties of semiprime submodules.

Let M be a multiplication module over a ring R. Let K be a submodule of M. Then there exists an ideal I of R such that $K = IM$. Consider the following descending chain of ideals of R:

$$I \supseteq I^2 \supseteq \cdots.$$

Then we can get a descending chain of submodules of M

$$K \supseteq K^2 \supseteq \cdots.$$
From this, we can see the following: if $K \subseteq N$, where N is a submodule of M, then $K^n \subseteq N$ for every positive integer n. In view of this it is natural to ask a question: when $K^n \subseteq N$, where n is a positive integer, under what conditions can we get $K \subseteq N$? The following result deals with this question.

Theorem 2.1. Let M be a graded multiplication module over R and P be a proper graded R-submodule of M. Then the following statements are equivalent.

(i) P is semiprime.

(ii) If $(Rx)^n \subseteq P$, where $x \in h(M)$ and n is a positive integer, then $x \in P$.

(iii) If $K^n \subseteq P$, where K is a graded submodule of M and n is a positive integer, then $K \subseteq P$.

(iv) If L is a graded submodule of M such that $P \subseteq L \subseteq M$, then $(P :_R L)$ is a graded semiprime ideal of R.

(v) $(P :_R M)$ is a graded semiprime ideal of R.

(vi) $\text{grad}(P) = P$.

(vii) If $Rx \cdot Ry \subseteq P$, where $x, y \in h(M)$, then $Rx \cap Ry \subseteq P$.

(viii) The factor R-module M/P has no nonzero nilpotent submodule.

(ix) There exists a graded semiprime ideal p of R with $(0 :_R M) \subseteq p$ such that $P = pM$.

Proof. (i) \Rightarrow (ii) Let P be a graded semiprime submodule of M. Assume that $(Rx)^n \subseteq P$, where $x \in h(M)$ and n is a positive integer. Since M is a multiplication module, there exists a graded ideal a of R such that $Rx = aM$. Then

$$a^nM = (aM)^n = (Rx)^n \subseteq P.$$

Since P is a graded semiprime submodule of M, we have $Rx = aM \subseteq P$. Therefore $x \in P$.

(ii) \Rightarrow (iii) Assume that $K^n \subseteq P$, where K is a graded submodule of M and n is a positive integer. To show that $K \subseteq P$, it suffices to show that every element x of $h(K)$ belongs to P. Let x be an arbitrary element of $h(K)$. Then $x \in h(M)$ and $(Rx)^n \subseteq K^n \subseteq P$. By (ii), $x \in P$.

(iii) \Rightarrow (iv) Assume that (iii) is true. Assume that L is a graded submodule of M such that $P \subseteq L \subseteq M$. Then $(P :_R L)$ is proper. By Lemma 1.2, $(P :_R L)$ is graded.

Also, assume that $a^n b \subseteq (P :_R L)$, where n is a positive integer and a and b are graded ideals of R. Then

$$(ab)L^n = (ab)^nL = b^{n-1}((a^n b)L) \subseteq b^{n-1}P \subseteq P.$$

Notice that $(ab)L$ is a graded submodule of M. Then by (iii) we have $(ab)L \subseteq P$. This shows that $ab \subseteq (P :_R L)$. Hence $(P :_R L)$ is a semiprime ideal.

(iv) \Rightarrow (v) Assume that (iv) is true. Taking L by M, we can see that $(P :_R M)$ is a graded semiprime ideal of R.

(v) \Rightarrow (vi) Assume that (v) is true. Clearly, $P \subseteq \text{grad}(P)$. Conversely, assume that $(Rx)^n \subseteq P$ for some positive integer n. Then we need to show
that \(x \in P \). If \(n = 1 \), then \(x \in P \); we are done. Assume that \(n > 1 \). Since \(M \) is a graded multiplication module, there is a graded ideal \(\alpha \) of \(R \) such that \(Rx = \alpha M \). Then
\[
\alpha^n M = (Rx)^n \subseteq P.
\]
So, \(\alpha^{n-1} \alpha = \alpha^n \subseteq (P :_R M) \). Since \((P :_R M) \) is graded semiprime, we get \(\alpha \subseteq (P :_R M) \). Hence
\[
x \in Rx = \alpha M \subseteq (P :_R M)M = P,
\]
as required.

(vi) \(\Rightarrow \) (vii) Assume that (vi) is true. Assume that \(Rx \cdot Ry \subseteq P \), where \(x, y \in h(M) \). Let \(m \) be an arbitrary element of \(Rx \cap Ry \). Then \(Rm \subseteq Rx \) and \(Rm \subseteq Ry \). Hence
\[
(Rm)^2 \subseteq (Rx) \cdot (Ry) \subseteq P.
\]
By (vi), \(Rm \subseteq P \). Hence \(m \in P \). This shows that \(Rx \cap Ry \subseteq P \).

(vii) \(\Rightarrow \) (viii) Assume that (vii) is true. Let \(x + P \) be an arbitrary nilpotent element of \(M/P \). Then there exists a positive integer \(n \) such that \(((Rx + P)^{n}/P) = 0 \) in \(M/P \). There exists a graded ideal \(\alpha \) of \(R \) such that \(Rx = \alpha M \). So,
\[
((Rx)^n + P)/P = (\alpha^n M + P)/P = \alpha^n(M/P) = ((Rx + P)^{n}/P) = 0.
\]
This implies that \((Rx)^n \subseteq P \). By (vii),
\[
x \in Rx = n \text{ times}
\]
Hence \(x + P = 0 + P \).

(viii) \(\Rightarrow \) (ix) Assume that (viii) is true. Since \(M \) is a graded multiplication module, there exists a graded ideal \(p \) of \(R \) such that \(P = pM \). To show that \(p \) is semiprime, assume that \(\alpha^n b \subseteq p \), where \(\alpha \) and \(b \) are graded ideals of \(R \). Then \((\alpha b)^n \subseteq p \). So,
\[
((\alpha b)M)^n = (\alpha b)^n M \subseteq pM = P.
\]
This means that
\[
((\alpha b)M + P)/P)^n = ((\alpha b)M)^n + P)/P = \{0 + P\}.
\]
By (viii), \(((\alpha b)M + P)/P = \{0 + P\} \). This implies that
\[
(\alpha b)M \subseteq ((\alpha b)M + P = P = pM.
\]
Since \(M \) is multiplication, it follows that \(\alpha b \subseteq p \). Therefore \(p \) is semiprime.

Also, let \(\alpha \) be an arbitrary element of \(0 :_R M \). Then \(\alpha M = 0 \subseteq pM \). Since \(M \) is multiplication, it follows that \(\alpha \in p \). Hence \((0 :_R M) \subseteq p \).

(ix) \(\Rightarrow \) (i) Assume that (ix) is true. To show that \(P \) is semiprime, assume that \(\alpha^n K \subseteq P \), where \(\alpha \) is a graded ideal of \(R \) and \(K \) is a graded submodule of \(M \), and \(n \) is a positive integer. Since \(M \) is a graded multiplication module, there exists a graded ideal \(b \) of \(R \) such that \(K = bM \). Then
\[
(\alpha^n b)M = \alpha^n K \subseteq P = pM.
\]
Since \(p + (0 :_R M) = p \), it follows from [6, Theorem 9, p. 231] that either \(a^n b \subseteq p \) or \(M = (p :_R a^n b)M \). If \(a^n b \subseteq p \), then we have \(ab \subseteq p \) since \(p \) is semiprime. Hence \(aK = a(bM) = (ab)M \subseteq pM = P \); we are done. Or, assume that \(M = (p :_R a^n b)M \). Notice that
\[
(a^n(p :_R a^n b)b) = (p :_R a^n b)a^n b \subseteq p.
\]
Since \(p \) is semiprime, we have \((p :_R a^n b)ab \subseteq p \). Hence
\[
aK = a(bM) = (ab)M = ((p :_R a^n b)ab)M \subseteq pM = P.
\]
Hence \(P \) is semiprime. \(\square \)

Corollary 2.2. Let \(R \) be a graded ring and \(M \) be a graded multiplication module over \(R \). Then a proper graded submodule \(P \) of \(M \) is semiprime if and only if \(M \setminus P \) is multiplicatively closed.

Proof. Let \(P \) be a graded semiprime submodule of \(M \) and let \(x \in M \setminus P \). Since \(P \) is graded semiprime, it follows from Theorem 2.1 that \((Rx)^n \subseteq P \) for every positive integer \(n \). Hence \((Rx)^n \cap (M \setminus P) \neq \emptyset \). This shows that \(M \setminus P \) is multiplicatively closed.

Conversely, assume that \(M \setminus P \) is multiplicatively closed. To show that \(P \) is semiprime, assume that \((Rx)^n \subseteq P \), where \(n \) is a positive integer and \(x \in h(M) \). We need to show that \(x \notin P \). Suppose on the contrary that \(x \notin P \). Then \(x \in M \setminus P \). By our assumption, \((Rx)^n \cap (M \setminus P) \neq \emptyset \). Take \(y \in (Rx)^n \cap (M \setminus P) \). Then \(y \in (Rx)^n \subseteq P \). This contradiction shows that \(x \in P \); as needed. \(\square \)

Let \(M \) be a graded multiplication module over a graded ring \(R \). Then \(N \cdot K \subseteq N \cap K \) for each pair of graded submodules \(N \) and \(K \) of \(M \). \(M \) is said to be **regular** if for each pair of graded submodules \(N \) and \(K \) of \(M \), \(N \cdot K = N \cap K \).

Corollary 2.3. Let \(R \) be a graded ring and \(M \) be a regular graded multiplication module over \(R \). Then every proper graded submodule of \(M \) is semiprime.

The condition “\(M \) being multiplication” in Theorem 2.1 cannot be omitted. The example of this is given below.

Example 2.4. First, consider the set \(\mathbb{Z} \) of all integers. Then \((\mathbb{Z}, +) \) is a group with additive identity \(0 \) and \((\mathbb{Z}, +, \cdot) \) is a commutative ring with identity \(1 \). Take \(G = (\mathbb{Z}, +) \) and \(R = (\mathbb{Z}, +, \cdot) \). Define
\[
R_g = \begin{cases}
\mathbb{Z} & \text{if } g = 0 \\
0 & \text{otherwise.}
\end{cases}
\]
Then each \(R_g \) is an additive subgroup of \(R \) and \(R \) is their internal direct sum. In fact, \(1 \in R_0 \) and \(R_g R_h \subseteq R_{g+h} \). That is, \(R = \bigoplus_{g \in G} R_g \). Hence \(R \) is a \(G \)-graded ring. In other words, the ring \((\mathbb{Z}, +, \cdot) \) of integers is a \((\mathbb{Z}, +) \)-graded ring.
Next, let M be the set $\mathbb{Z} \times \mathbb{Z}$. Then M can be given a \mathbb{Z}-module structure. Define
\[
M_g = \begin{cases}
\mathbb{Z} \times 0 & \text{if } g = 0 \\
0 \times \mathbb{Z} & \text{if } g = 1 \\
0 \times 0 & \text{otherwise.}
\end{cases}
\]
Then $M = \bigoplus_{g \in G} M_g$. Hence M is a G-graded R-module. In other words, the \mathbb{Z}-module $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$ is a \mathbb{Z}-graded \mathbb{Z}-module.

Now, consider a submodule $N = 9\mathbb{Z} \times 0$ of M. Then it is a graded submodule. $(N :_R M) = 0$ and so it is a graded semiprime ideal of R. But the graded submodule N is not graded semiprime in M, since $3^2(2, 0) \in N$ but $3(2, 0) \notin N$.

By Theorem 2.1, we can see that the \mathbb{Z}-module $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$ is not a multiplication module.

Lemma 2.5. Let R be a graded ring and M be a graded R-module. If P is a graded submodule of M and $x \in h(M)$, then both Rx and $P + Rx$ are graded submodules of M.

Proof. This follows from Lemma 1.2. □

Theorem 2.6. Let R be a graded ring and M be a graded multiplication module over R. Let K be a graded submodule of M and S be a multiplicatively closed subset of M such that $K \cap S = \emptyset$. Then there is a graded semiprime submodule P of M which is maximal with respect to the properties that $K \subseteq P$ and $P \cap S = \emptyset$.

Proof. Let Ω be the set of all graded submodules L of M such that $K \subseteq L$ and $L \cap S = \emptyset$. $K \in \Omega$, so in particular $\Omega \neq \emptyset$. By the Zorn lemma Ω has a maximal element, say P. It is enough to show that P is semiprime. To show that P is semiprime, assume that $(Rx)^n \subseteq P$, where n is a positive integer and $x \in h(M)$. Then we need to show that $x \in P$. Suppose on the contrary that $x \notin P$. Then $P \subset P + Rx$. By Lemma 2.5, $P + Rx$ is graded. By the maximality of P, $P + Rx \notin \Omega$. Hence $(P + Rx) \cap S = \emptyset$. Take $y \in (P + Rx) \cap S$. Then $y \in P + Rx$ and $y \in S$. Since M is a multiplication module and $(Rx)^n \subseteq P$, we can show that
\[
(P + Rx)^n \subseteq P + (Rx)^n = P.
\]
Also, since S is multiplicatively closed and $y \in S$, we have $(Ry)^n \cap S \neq \emptyset$. Hence
\[
\emptyset \neq (Ry)^n \cap S \subseteq (P + Rx)^n \cap S \subseteq P \cap S,
\]
contradicting the disjointness of P and S. This shows that $x \in P$. Therefore P is a graded semiprime submodule. □

Lemma 2.7. Let R be a graded ring and M be a graded multiplication module over R. Let Ω be a nonempty family of graded submodules of M.

(i) If each member of Ω is semiprime in M, then so is $\bigcap_{Q \in \Omega} Q$.

(ii) If each member of Ω is semiprime in M, Ω is totally ordered by inclusion, and $\bigcup_{Q \in \Omega} Q \neq M$, then $\bigcup_{Q \in \Omega} Q$ is a proper graded semiprime submodule of M.\]
Proof. (i) Assume that each member of Ω is semiprime in M. Then by Theorem 2.1,

$$\text{grad}(\bigcap_{Q \in \Omega} Q) \cap h(M) \subseteq (\bigcap_{Q \in \Omega} \text{grad}(Q)) \cap h(M)$$

$$= \bigcap_{Q \in \Omega} (\text{grad}(Q) \cap h(M))$$

$$= \bigcap_{Q \in \Omega} (Q \cap h(M))$$

$$= (\bigcap_{Q \in \Omega} Q) \cap h(M).$$

It is clear that the converse inclusion holds. Hence by Theorem 2.1 again, $\bigcap_{Q \in \Omega} Q$ is semiprime.

(ii) Assume that Ω is totally ordered by inclusion and $\cup_{Q \in \Omega} Q \neq M$. Then it is clear that $\cup_{Q \in \Omega} Q$ is a proper graded submodule of M. Now assume that each member of Ω is semiprime in M. Then by Theorem 2.1,

$$\text{grad}(\cup_{Q \in \Omega} Q) \cap h(M) \subseteq (\cup_{Q \in \Omega} \text{grad}(Q)) \cap h(M)$$

$$= \cup_{Q \in \Omega} (\text{grad}(Q) \cap h(M))$$

$$= \cup_{Q \in \Omega} (Q \cap h(M))$$

$$= (\cup_{Q \in \Omega} Q) \cap h(M).$$

It is clear that the converse inclusion holds. Hence by Theorem 2.1 again, $\cup_{Q \in \Omega} Q$ is semiprime. □

A graded semiprime submodule P of a graded R-module M is said to be minimal if whenever $N \subseteq P$ and N is graded semiprime, then $N = P$.

Proposition 2.8. Let R be a graded ring and M be a graded multiplication module over R. If N is a graded semiprime submodule of M, then it contains a minimal graded semiprime submodule.

Proof. Consider the set Σ of all graded semiprime submodules P of M such that $N \supseteq P$. Since $N \in \Sigma$ we see that Σ is not empty. Also Σ is a partial order on Σ. Let Ω be a non-empty subset of Σ which is totally ordered by \supseteq. Therefore by Lemma 2.7(i), $\bigcap_{P \in \Omega} P$ is a graded semiprime submodule of M. Now the result holds by applying the Zorn lemma. □

Theorem 2.9. Let R be a graded ring and M be a graded multiplication module over R. If N is a proper graded submodule of M and if M is finitely generated, then there exists a graded semiprime submodule of M that contains N.

Proof. Assume that N is a proper graded submodule of M and M is finitely generated. Let Σ be the collection of all proper graded submodules of M that contains N. Then $N \in \Sigma$. In particular, $\Sigma \neq \emptyset$. Order Σ by inclusion. Then Σ is partially ordered. Let Ω be any chain of Σ. Take $Q^* = \cup_{Q \in \Omega} Q$. Then by Lemma 2.7(ii), $Q^* \in \Sigma$. Ω has an upper bound in Σ. By the Zorn lemma, Σ has a maximal member, say P. It remains to prove that P is semiprime.

Suppose that $\text{grad}(P) \cap h(M) \neq P \cap h(M)$. Then we can take an element $x \in (\text{grad}(P) \cap h(M)) \setminus (P \cap h(M))$. Then $x \notin P$, so $P \subset P + Rx$. By
Lemma 2.7(ii) and by the maximality of P, we must have $P + Rx = M$. Since $x \in \text{grad}(P)$, there exists a positive integer n such that $x^n \in P$. Hence
\[M = M^n = (P + Rx)^n \subseteq P + (Rx)^n \subseteq P, \]
so $M = P$. This contradiction shows that $\text{grad}(P) \cap h(M) = P \cap h(M)$. Therefore it follows from Theorem 2.1 that P is semiprime. \qed

3. Almost semiprime submodules

In this section we define an almost semiprime submodule of a graded multiplication module over a graded ring and discuss the sum of two almost semiprime submodules.

Let R be a graded ring and M be a graded multiplication module over R. Let Q be a proper graded submodule of M. Then $Q \cap h(M) \subseteq \text{grad}(Q) \cap h(M)$. The following two statements are true:
\[
\text{grad}(0_M) \cap h(M) \subseteq \text{grad}(Q) \cap h(M),
\]
\[
\text{grad}(0_M) \cap Q \cap h(M) \subseteq Q \cap h(M).
\]

More precisely, we can draw their lattice diagram as follows:

\[\begin{align*}
\text{grad}(Q) \cap h(M) & \\ & \text{grad}(0_M) \cap h(M) \\
\text{grad}(0_M) \cap Q \cap h(M) & \\ & Q \cap h(M)
\end{align*} \]

Then it is easy to see that
\[
(Q \cap h(M)) \setminus (\text{grad}(0_M) \cap Q \cap h(M)) \\
\subseteq (\text{grad}(Q) \cap h(M)) \setminus (\text{grad}(0_M) \cap h(M)).
\]

Remark 3.1. This statement is the same as the following one but the following one is much easier for us to make sure if it is true.
\[
(Q \setminus \text{grad}(0_M)) \cap h(M) \subseteq (\text{grad}(Q) \setminus \text{grad}(0_M)) \cap h(M).
\]

Definition 3.2. Let R be a graded ring and M be a graded multiplication module over R. A proper graded submodule Q of M is said to be **almost semiprime** if
\[
(\text{grad}(Q) \cap h(M)) \setminus (\text{grad}(0_M) \cap h(M)) \\
= (Q \cap h(M)) \setminus (\text{grad}(0_M) \cap Q \cap h(M)).
\]

Let $g \in G$. Likewise, a proper graded submodule Q_g of the R_e-module M_g is said to be **almost g-semiprime** if
\[
(\text{grad}(Q_g) \cap M_g) \setminus (\text{grad}(0_{M_g}) \cap M_g) = Q_g \setminus (\text{grad}(0_{M_g}) \cap Q_g).
\]
It is immediate that the zero submodule of a graded multiplication module is graded and almost semiprime.

Let R be a graded ring and M be a graded multiplication module over R. Let Q be a proper graded submodule of M. Assume that Q is semiprime. Then it follows from Theorem 2.1 that $\text{grad}(Q) \cap h(M) = Q \cap h(M)$, so that $\text{grad}(0_M) \cap h(M) = \text{grad}(0_M) \cap Q \cap h(M)$. Hence Q is almost semiprime. This shows that every semiprime submodule of M is almost semiprime. Conversely, if Q is almost semiprime and $\text{grad}(0_M) \cap h(M) = \text{grad}(0_M) \cap Q \cap h(M)$, then Q is semiprime.

Proposition 3.3. Let R be a graded ring, M be a graded multiplication module over R and Q be a proper graded submodule of M. If Q is almost semiprime, then for every $g \in G$, Q_g is almost g-semiprime in M_g.

Proof. Assume that Q is almost semiprime. Then the equality (3.1) holds. Let $g \in G$. Note that $Q = \oplus_{g \in G} Q_g$. Then taking the intersection of the equation (3.1) with M_g, we can get (3.2). Hence Q_g is almost semiprime. □

Lemma 3.4. Let R be a graded ring, M a graded multiplication module over R and K, Q graded submodules of M such that $K \subseteq Q$. Then the following statements are true.

(i) If Q is almost semiprime such that $K \subseteq M_g$ for all $g \in G$, then Q/K is almost semiprime in M/K.

(ii) If K and Q/K are almost semiprime in M and M/K, respectively, then Q is almost semiprime in M.

Proof. If $K \subseteq Q$, then we have already known that M/K and Q/K are G-graded.

(i) Assume that Q is almost semiprime such that $K \subseteq M_g$ for all $g \in G$. Then $K \subseteq \bigcup_{g \in G} M_g = h(M)$ and

$$h(M/K) = \bigcup_{g \in G} ((M_g + K)/K) = \bigcup_{g \in G} (M_g/K) = h(M)/K.$$

Now since the equality (3.1) holds, direct computation gives

$$\text{grad}(Q/K) \cap h(M/K) \backslash \text{grad}(0_M/K) \cap h(M/K) = (Q/K \cap h(M/K)) \backslash (\text{grad}(0_M/K) \cap Q/K \cap h(M/K)).$$

Hence Q/K is almost semiprime.

(ii) In order to show that Q is almost semiprime, we show that (3.1) holds. Let x belong up in the equality (3.1). Then $(Rx)^s \subseteq Q$ for some positive integer s. This implies that $Q(x + K)^s = ((Rx)^s + K)/K$ is in Q/K. Hence $x + K \in \text{grad}(Q/K)$. Now, there are two cases to consider.

Case 1. Assume that $x + K$ is in $\text{grad}(0_M/K)$. Then there exists a positive integer t such that $(Rx + K)^t = 0$ in M/K. So, $(Rx)^t \subseteq K$. This implies that $x \in \text{grad}(K)$. Since K is almost semiprime, we have

$$x \in (\text{grad}(K) \cap h(M)) \backslash (\text{grad}(0_M) \cap h(M)) = (K \cap h(M)) \backslash (\text{grad}(0_M) \cap K \cap h(M)).$$
Hence since $K \subseteq Q$, x belongs down in the equality (3.1).

Case 2. Assume that $x + K$ is not in $\text{grad}(0_{M/K})$. Then $x + K$ belongs up in the equality (3.3). Since Q/K is almost semiprime, the equality (3.3) holds. Hence $x + K$ belongs down in the equality (3.3). This implies that $x + K \in Q/K$. Then there exists an element $y \in Q$ such that $x + K = y + K$. This implies that $x = (x-y) + y \in K + Q = Q$ since $K \subseteq Q$. Hence x belongs down in the equality (3.1). This shows that the equality (3.1) holds. Therefore Q is almost semiprime.

Theorem 3.5. Let R be a graded ring, M be a graded multiplication module over R and K, Q be graded submodules of M. If K and Q are almost semiprime in M such that $Q + K \neq M$ and $Q \cap K \subseteq M_g$ for all $g \in G$, then $Q + K$ is almost semiprime in M.

Proof. Assume that Q and K are almost semiprime in M such that $Q + K \neq M$ and $Q \cap K \subseteq M_g$ for all $g \in G$. Then Lemma 3.4(i), $Q/(Q \cap K)$ is also almost semiprime in $M/(Q \cap K)$. Notice that $Q/(Q \cap K) \cong (Q + K)/K$ by the second isomorphism theorem for modules. Then $(Q + K)/K$ is almost semiprime in M/K. Hence by Lemma 3.4(ii), $Q + K$ is almost semiprime.

Acknowledgements. The authors would like to appreciate the referees for giving us the several corrections.

References

Sang Cheol Lee
Department of Mathematics Education
Chonbuk National University
Jeonju 561-756, Korea

and
Department of Mathematics
The University of Colorado at Boulder
395 UCB
Boulder, Colorado 80309-0395, USA

E-mail address: scl@jbnu.ac.kr, Sang.C.Lee@Colorado.EDU
Rezvan Varmažyar
Department of Mathematics
Islamic Azad University, Khoy Branch
Khoy 58168-44799, Iran
E-mail address: varmażys@iaukhoy.ac.ir