DOI QR코드

DOI QR Code

Calculation of Intensity Factors Using Weight Function Theory for a Transversely Isotropic Piezoelectric Material

횡등방성 압전재료에서의 가중함수이론을 이용한 확대계수 계산

  • Son, In-Ho (Dept. of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • An, Deuk-Man (Dept. of Mechanical Engineering, Pusan Nat'l Univ.)
  • 손인호 (부산대학교 기계공학부) ;
  • 안득만 (부산대학교 기계공학부)
  • Received : 2011.02.24
  • Accepted : 2011.12.14
  • Published : 2012.02.01

Abstract

In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two-dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.

파괴역학에서 가중함수는 응력확대계수를 계산하기 위하여 사용되어진다. 본 논문에서는 균열을 가진 횡등방성 압전재료에 대한 전기-기계적 분석을 행하여 평면변형률 상태의 압전문제를 Leknitskii 해석법으로 풀었고 가중함수이론을 압전재료에 확대 적용하였다. 가중함수이론을 이용하여 응력확대계수와 전기변위확대계수를 구하였다.

Keywords

References

  1. Pak, Y., 1990, "Crack Extension Force in a Piezoelectric Material," J. of Applied Mechanics, Vol. 57, pp. 647-653. https://doi.org/10.1115/1.2897071
  2. Sosa, H., 1991, "Plane Problem in Piezoelectric Media with Defects," Int. J. of Solids and Structures, Vol. 28, No. 4, pp. 491-505. https://doi.org/10.1016/0020-7683(91)90061-J
  3. Sosa, H., 1992, "On the Fracture Mechanics of Piezoelectric Solids," Int. J. of Solids and Structures, Vol. 29, No. 21, pp. 2613-2622. https://doi.org/10.1016/0020-7683(92)90225-I
  4. Xu, X. -L. and Rajapakse, R. K. N. D., 2001, "On a Plane Crack in Piezoelectric Solids," Int. J. of Solids and Structures, Vol. 38, pp. 7643-7658. https://doi.org/10.1016/S0020-7683(01)00029-4
  5. Suo, Z., Kuo, C. -M., Barnett, D. M. and Willis, J. R., 1992, "Fracture Mechanics for Piezoelectric Ceramics," J. Mech. Phys. Solids, Vol. 40, No. 4, pp. 739-765. https://doi.org/10.1016/0022-5096(92)90002-J
  6. Beom, H. G. and Atluri, S. N., 1996, "Near-tip Fields and Intensity Factors for Interfacial Cracks in Dissimilar Anisotropic Piezoelectric Media," Int. J. of Fracture, Vol. 75, pp. 163-183. https://doi.org/10.1007/BF00034075
  7. Ma, L. and Chen, Y., 2001, "Weight Functions for Interface Cracks in Dissimilar Anisotropic Piezoelectric Materials," Int. J. of Fracture, Vol. 110, pp. 263-279. https://doi.org/10.1023/A:1010805704212
  8. Govorukha, V., Kamlah, M. and Munz, D., 2004, "The Interface Crack Problems for a Piezoelectric Semi-infinite Strip under Concentrated Electromechanical Loading," Eng. Fracture Mechanics, Vol. 71, pp. 1853-1871. https://doi.org/10.1016/j.engfracmech.2003.12.005
  9. An, D., 1987, "Weight Function Theory for a Rectilinear Anisotropic Body," Int. J. of Fracture, Vol. 34, pp. 85-109. https://doi.org/10.1007/BF00019766
  10. An, D. and Son. I, 2007, "Weight Functions for Notched Structures with Anti-plane Deformation," Int. J. of Precision Engineering and Manufacturing, Vol. 8, pp. 60-63.
  11. Liu, Y. and Fan, H., 2001, "On the Conventional Boundary Integral Equation Formulation for Piezoelectric Solids with Defects or of Thin Shapes," Eng. Analysis with Boundary Elements, Vol. 25, pp. 77-91. https://doi.org/10.1016/S0955-7997(01)00004-2
  12. Haojiang, D., Guoqing, W. and Weiqiu, C., 1998, "A Boundary Integral Formulation and 2D Fundamental Solutions for Piezoelectric Media," Comput. Mehods Appl. Mech. Engrg., Vol. 158, pp. 65-80. https://doi.org/10.1016/S0045-7825(97)00227-2