DOI QR코드

DOI QR Code

Effect of Na Salt on the Formation of MgO Obtained from Mg(OH)2 by Precipitation Method

침전법으로 제조된 Mg(OH)2의 잔류 Na염이 MgO 입자 형성에 미치는 영향

  • Lee, Dong-Hyun (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Ryu, Seung-Bom (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Dae-Sung (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lim, Hyung-Mi (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Seung-Ho (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 이동현 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 유승범 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 김대성 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 임형미 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 이승호 (한국세라믹기술원 그린세라믹본부 에코복합소재센터)
  • Received : 2011.12.09
  • Accepted : 2012.01.02
  • Published : 2012.01.27

Abstract

The particle size of MgO was examined as a function of the Na content in $Mg(OH)_2$ powders and the calcination temperature. $Mg(OH)_2$ suspension was obtained by dropwise precipitation of $Mg(NO_3)_2{\cdot}6H_2O$ and NaOH solutions. The suspension was diluted by varying the dilution volume ratio of distilled water to $Mg(OH)_2$ suspension to change the Na salt concentration in the suspension. $Mg(OH)_2$ slurry was filtered and dried at $60^{\circ}C$ under vacuum, and then its $Mg(OH)_2$ powder was calcined to produce MgO with different amount of Na content at $500\sim900^{\circ}C$ under air. Investigation of the physical and chemical properties of the various MgO powders with dilution ratio and calcination temperature variation was done by X-ray diffraction, transmission electron microscopy, BET specific surface area and thermal gravimetric analysis. It was observed that MgO particle size could depend on the condition of calcination temperature and dilution ratio of the $Mg(OH)_2$ suspension. The particle size of the MgO depends on the Na content remaining in the $Mg(OH)_2$ powder, which powder was prepared by changing the dilution ratio of the $Mg(OH)_2$ suspension. This change increased as the calcination temperature increased and decreased as the dilution ratio increased. The growth of MgO particle size according to the increase of temperature was more effective when there was a relatively high content of Na. The increase of Na content lowered the temperature at which decomposition of $Mg(OH)_2$ to MgO took place, thereby promoting the crystal growth of MgO.

Keywords

References

  1. M. Sterrer, T. Berger, O. Diwald and E. Knözinger, J. Am. Chem. Soc., 125(1), 195 (2003). https://doi.org/10.1021/ja028059o
  2. J. L. Grant, R. Cooper, P. Zeglinski and J. F. Boas, J. Chem. Phys. 90(2), 807 (1989). https://doi.org/10.1063/1.456105
  3. C. I. Kim, Y. H. Jung, Y. J. Lee, J. H. Paik, E. H. Choi, S. Jung and J. S. Kim, Kor. J. Mater. Res. 18(8), 422 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.8.422
  4. S. H. Jo, P. Muralidharan and D. K. Kim, Kor. J. Mater. Res. 18(9), 470 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.9.470
  5. R. Chaim, Z. Shen and M. Nygren, J. Mater. Res., 19(9), 2527 (2004). https://doi.org/10.1557/JMR.2004.0334
  6. D. Chen, E. H. Jordan and M. Gell, Scripta Mater., 59(7), 757 (2008). https://doi.org/10.1016/j.scriptamat.2008.06.007
  7. M. A. Faghihi-Sani and A. Yamaguchi, Ceram. Int., 28(8), 835 (2002). https://doi.org/10.1016/S0272-8842(02)00049-4
  8. H. Hattori, Chem. Rev. 95(3), 537 (1995). https://doi.org/10.1021/cr00035a005
  9. J. M. Hur and H. I. Lee, Appl. Chem., 4(2), 300 (2000) (in Korean).
  10. Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang and Y. Qian, Chem. Mater., 13(2), 435 (2001). https://doi.org/10.1021/cm000607e
  11. Z. Yan, S. Chinta, A. A. Mohamed, J. P. Fackler Jr. and D. W. Goodman, J. Am. Chem. Soc., 127(6), 1604 (2005). https://doi.org/10.1021/ja043652m
  12. S. W. Bain, Z. Ma, Z. M. Cui, L. S. Zhang, F. Niu and W. G. Song, J. Phys. Chem. C, 112(30), 11340 (2008). https://doi.org/10.1021/jp802863j
  13. N. Takahashi, Solid State Sci., 9(8), 722 (2007). https://doi.org/10.1016/j.solidstatesciences.2007.05.007
  14. M. K. Hyun, H. M. Lim, J. Yoon, D. J. Lee, S. H. Lee, C. M. Whang and S. O. Jeong, J. Korean Ind. Eng. Chem., 20(2), 234 (2009) (in Korean).
  15. J. Lv, L. Qiu and B. Qu, J. Cryst. Growth, 267(3-4), 676 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.034
  16. D. An, X. Ding, Z. Wang and Y. Liu, Colloid. Surface. Physicochem. Eng. Aspect, 356(1-3), 28 (2010). https://doi.org/10.1016/j.colsurfa.2009.12.027
  17. R. Giorgi, C. Bozzi, L. Dei, C. Gabbiani, B. W. Ninham and P. Baglioni, Langmuir, 21(18), 8495 (2005). https://doi.org/10.1021/la050564m
  18. C. Y. Tai, C. T. Tai, M. H. Chang and H. S. Liu, Ind. Eng. Chem. Res., 46(17), 5536 (2007). https://doi.org/10.1021/ie060869b
  19. H. S. Jung, J. K. Lee, J. Y. Kim and K. S. Hong, J. Solid State Chem., 175(2), 278 (2003). https://doi.org/10.1016/S0022-4596(03)00280-9
  20. V. A. Phillips, H. Opperhauser and J. L. Kolbe, J. Am. Ceram. Soc., 61(1-2), 75 (1978). https://doi.org/10.1111/j.1151-2916.1978.tb09235.x
  21. J. Green, J. Mater. Sci., 18(3), 637 (1983). https://doi.org/10.1007/BF00745561
  22. C. F. Base and R. E. Messmer, The Hydrolysis of Cations, reprint ed., p.1-7, Krieger Pub. Co. Inc., Malabar (1986).
  23. J. C. Yu, A. Xu, L. Zhang, R. Song and L. Wu, J. Phys. Chem. B, 108(1), 64 (2004). https://doi.org/10.1021/jp035340w