DOI QR코드

DOI QR Code

The Study on Implementation of a Semi-Solid Flat Phantom with Equivalent Electrical Properties to Whole Human Body at MICS and ISM Band

MICS 대역과 ISM 대역에서 인체 전기적 상수를 갖는 준(準) 고체형 플랫 팬텀 제작

  • Lee, Soon-Yong (Department of Electronic & Computer Engineering, Hanyang University) ;
  • Seo, Won-Bum (Department of Electronic & Computer Engineering, Hanyang University) ;
  • Kwon, Kyeol (Department of Electronic & Computer Engineering, Hanyang University) ;
  • Choi, Jea-Hoon (Department of Electronic & Computer Engineering, Hanyang University)
  • 이순용 (한양대학교 전자컴퓨터통신공학과) ;
  • 서원범 (한양대학교 전자컴퓨터통신공학과) ;
  • 권결 (한양대학교 전자컴퓨터통신공학과) ;
  • 최재훈 (한양대학교 전자컴퓨터통신공학과)
  • Received : 2012.01.04
  • Accepted : 2012.01.04
  • Published : 2012.01.31

Abstract

When wireless devises for MICS(Medical Implant Communication Service) or ISM(Industrial Scientific and Medical) bands are designed, it is necessary to verify the performance by using a human body flat phantom. However, most of studies on the phantom are limited to the biological effects of mobile-phone EMF. In this paper, semi-solid phantoms having the electric properties suggested by FCC at MICS and ISM bands are fabricated. The manufactured phantoms satisfy the electric properties($\varepsilon_r=56.7$ and $\sigma=0.94$ at MICS band, $\varepsilon_r=52.7$ and $\sigma=1.95$ at ISM band) at each band. All the composing materials for phantoms are commercially available in domestic market. Two methods using both polyethylene powder and TX-151 and glycerin at each band are proposed for diverse purpose. The electrical properties of the fabricated phantoms are measured by a dielectric probe kit and network analyzer after the lapse of one day (24 hours).

MICS 및 ISM 대역의 무선기기 설계 시에 인체 팬텀을 이용한 성능검증이 필수적으로 요구되고 있으나, 인체팬텀에 관한 연구 대부분이 휴대폰에 의한 생체 영향에 국한되어 있는 실정이다. 본 논문에서는 FCC에서 제안하고 있는 MICS 대역과 ISM 대역의 인체 팬텀에 대한 전기적 상수를 이용하여 준고체형 팬텀들을 제작하였다. 제작된 준 고체형 팬텀들은 각 대역에서 FCC에서 제시한 전기적 상수(MICS 대역에서 $\varepsilon_r=56.7$, $\sigma=0.94$, ISM 대역에서 $\varepsilon_r=52.7$, $\sigma=1.95$)들을 만족하였다. 또한, 제작된 준 고체형 팬텀의 재료들은 쉽게 구매 가능한 재료들로 구성되었으며, 팬텀 재료의 다양성을 위해서 각 대역에서 polyethylene과 TX-151을 이용한 방법과 글리세린을 이용한 두 가지 방법을 제시하였다. 제작된 준 고체형 팬텀은 평탄한 형태이며, 유전율 측정기로 제작후 1일 (24 시간)이 경과한 후 팬텀의 전기적 특성을 측정하였다.

Keywords

References

  1. 이성협, 윤양문, 김도현, "IEEE 802.15.6 중심의 WBAN 국내외 표준화 동향", 한국통신학회지(정보와 통신), 25(2), pp. 11-17, 2008년 2월.
  2. T. Houzen, M. Takahashi, K. Saito, and K. Ito, "Implanted planar inverted F-antenna for cardiac pacemaker system", Proceedings of iWAT2008, Chiba, Japan, Mar. 2008.
  3. J. Kim, Y. Rahmat-Samii, "Implanted antennas inside a human body: simulations, designs, and characterizations", IEEE Trans. Microwave Theory Tech., 52(8), pp. 1934-1943, Aug. 2004. https://doi.org/10.1109/TMTT.2004.832018
  4. P. Soontornpipit, C. Y. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants", IEEE Trans. Microwave Theory Tech., 52(8), pp. 1944-1951, Aug. 2004. https://doi.org/10.1109/TMTT.2004.831976
  5. Uisheon Kim, Jaehoon Choi, "An implantable antenna for wireless body area network application", JKEES, 10(4), pp. 206-211, Dec. 2010.
  6. Uisheon Kim, Jaehoon Choi, "Design of a microstrip patch antenna with enhanced F/B for WBAN applications", IEICE Transaction on Communications, E94-B(5), pp. 1135-1141, May 2011. https://doi.org/10.1587/transcom.E94.B.1135
  7. 박민영, 고채옥, 김정란, 백정기, "인체 착용형 휴대 단말기에 대한 노출량 해석 연구", 한국전자파학회논문지, 17(2), pp. 207-212, 2006년 2월.
  8. http://www.speag.com/products/over-the-air-performance/ head-phantoms
  9. 고채옥, 박민영, 도현정, 김정란, 정기범, 백정기, "이동통신 주파수 대역에서의 동물 실험용 국부 노출 장치 개발", 한국전자파학회논문지, 17(5), pp. 451-460, 2006년 5월.
  10. Koichi Ito, Hiroki Kawai, "Solid phantoms for evaluation of interactions between the human body and antennas", Proceedings of iWAT2005, Singapore, Mar. 2005.
  11. Yoshinobu Okano, Koichi Ito, Ichirou Ida, and Masaharu Takahashi, "The SAR evaluation method by a combination of thermographic experiments and biological tissue-equivalent phantoms", IEEE Trans. Microwave Theory Tech., 48(11), pp. 2094-2103, Nov. 2000. https://doi.org/10.1109/22.884200
  12. FCC Rules and Regulations 47 CFR Part 95.
  13. ETSI EN 301 839-1, The European Telecommunications Standards Institute, www.etsi.org.
  14. IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, IEEE Std. 1528TM, IEEE Standards Coordinating Committee, 34, Dec. 2003.
  15. D. L. Means, W. Kwok, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, Federal Communications Commission Office of Engineering & Technology, Supplement C(Edition 01-01) to OET Bulletin 65(Edition 97-01), Jun. 2001.

Cited by

  1. Design of a TM31Higher Order Mode Half Circular-Ring Microstrip Patch Antenna for On-Body Communications vol.25, pp.5, 2014, https://doi.org/10.5515/KJKIEES.2014.25.5.491
  2. Realistic Head Phantom for Evaluation of Brain Stroke Localization Methods Using 3D Printer vol.16, pp.4, 2016, https://doi.org/10.5515/JKIEES.2016.16.4.254
  3. Planar MIMO Antenna with Slits for WBAN Applications vol.2014, 2014, https://doi.org/10.1155/2014/151425
  4. A Wideband Zeroth-Order Resonance Antenna for Wireless Body Area Network Applications vol.E96.B, pp.10, 2013, https://doi.org/10.1587/transcom.E96.B.2348
  5. Manufacturing of a Korean Hand Phantom with Human Electrical Properties at 835 MHz and 1,800 MHz Bands vol.24, pp.5, 2013, https://doi.org/10.5515/KJKIEES.2013.24.5.534
  6. Design of Various WBAN Antennas Considering for the Location on a Human Body vol.25, pp.11, 2014, https://doi.org/10.5515/KJKIEES.2014.25.11.1095
  7. Dual-Band On-Body Repeater Antenna for In-on-On WBAN Applications vol.2013, 2013, https://doi.org/10.1155/2013/107251
  8. Design of a Dual-Band On-Body Antenna for a Wireless Medical Repeater System vol.24, pp.3, 2013, https://doi.org/10.5515/KJKIEES.2013.24.3.239
  9. Compact Microwave Radiator for Improving Heating Uniformity in Hyperthermia System vol.13, 2014, https://doi.org/10.1109/LAWP.2014.2333033
  10. MIMO Antenna with High Isolation for WBAN Applications vol.2015, 2015, https://doi.org/10.1155/2015/370763
  11. A Tapered Slot Antenna with Asymmetric Corrugations for a Microwave Brain Imaging System vol.24, pp.3, 2013, https://doi.org/10.5515/KJKIEES.2013.24.3.348
  12. Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications vol.2016, 2016, https://doi.org/10.1155/2016/4743207
  13. Design of Noninvasive Hyperthermia System Using Transmit-Array Lens Antenna Configuration vol.15, 2016, https://doi.org/10.1109/LAWP.2015.2477428
  14. Dual-band on-body antenna for in-on-on WBAN repeater applications vol.58, pp.2, 2016, https://doi.org/10.1002/mop.29591