DOI QR코드

DOI QR Code

A feruloyl esterase derived from a leachate metagenome library

  • Received : 2011.08.26
  • Accepted : 2011.10.04
  • Published : 2012.01.31

Abstract

A feruloyl esterase encoding gene (designated fae6), derived from a leachate metagenomic library, was cloned and the nucleotide sequence of the insert DNA determined. Translational analysis revealed that fae6 consists of a 515 amino acid poly-peptide, encoding a 55 kDa pre-protein. The Fae6 primary structure contained the G-E-S-A-G sequence, which corresponds well with a typical catalytic serine sequence motif (G-x-S-x-G). The fae6 gene was successfully over-expressed in E. coli and the recombinant protein was purified to 8.4 fold enrichment with 17% recovery. The $K_M$ data showed Fae6 has a high affinity to methyl sinapate while thermostability data indicated that fae6 was thermolabile with a half life ($T_{1/2}$) < 30 min at $50^{\circ}C$. High affinity for Fae6 against methyl sinapate, methyl ferulate and ethyl ferulate suggest that the enzyme can be useful in hydrolyzing ferulated polysaccharides in a biorefinery process.

Keywords

References

  1. Faulds, C. B. (2010) What can feruloyl esterases do for us? J. Phytochem. Rev. 9, 121-132. https://doi.org/10.1007/s11101-009-9156-2
  2. Wong, D. W. S. (2006) Feruloyl esterase: A key enzymes in Biomass degradation. Appl. Biochem. Biotech. 133, 87-109. https://doi.org/10.1385/ABAB:133:2:87
  3. Giuliani, S., Piana, C., Setti, L., Hochkoeppler, A., Pifferi, P. G., Williamson, G. and Faulds, C. B. (2001) Synthesis of pentylferulate by a feruloyl esterase from Aspergillus niger using water-in-oil microemulsions. Biotechnol. Lett. 23, 325-330. https://doi.org/10.1023/A:1005629127480
  4. Hatzakis, N. S., Daphnomili, D. and Smonou, I. (2003) Ferulic acid esterase from Humicola insolens catalyzes enentioselective transesterification of secondary alcohols. J. Mol. Catal. 21, 309-311. https://doi.org/10.1016/S1381-1177(02)00228-X
  5. Bornscheuer, U. T. (2002). Microbial carboxylesterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26, 73-81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
  6. Crepin, V. F., Faulds, C. B. and Connerton, I. F. (2004) Functional classification of the microbial feruloyl esterases. Appl. Microbiol. Biotechnol. 63, 647-652. https://doi.org/10.1007/s00253-003-1476-3
  7. Mohnen, D., Bar-Peled, M. and Somerville, C. (2008) Biosynthesis of plant cell wall. Biomass recalcitrance (Himmerl, M. E., ed.) pp. 266-277, Blackwell Publishing, Oxford, UK.
  8. Laszlo, J. A., Compton, D. L., Eller, F. J., Taylor, S. L. and Isbell, T. A. (2003) Packed-bed bioreactor synthesis of feruloylated monoacyl- and diacylglycerols: clean production of a "green" sunscreen. Green Chem. 5, 382-386. https://doi.org/10.1039/b302384b
  9. Topakas, E., Vafiadi, C. and Christakopoulos, P. (2007) Microbial production, characterization and applications of feruloyl esterases. Process. Biochem. 42, 497-509. https://doi.org/10.1016/j.procbio.2007.01.007
  10. Krueger, N. A., Adesogan, A. T., Staples, C. R., Krueger, W. K., Dean, D. B. and Littell, R. C. (2008) The potential to increase digestibility of tropical grasses with a fungal, ferulic acid esterase enzyme preparation. Animal Feed. Sci. Technol. 145, 95-108. https://doi.org/10.1016/j.anifeedsci.2007.05.042
  11. Nsereko, V. L., Smiley, B. K., Rutherford, W. M., Spielbauer, A., Forrester, K. J., Hettinger, G. H., Harman, E. K. and Harman, B. R. (2008) Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber. Animal Feed. Sci. Technol. 145, 122-135. https://doi.org/10.1016/j.anifeedsci.2007.06.039
  12. Record, E., Asther M., Sigoillot C., Pages, S., Punt, P. J., Delattre, M., Haon, M., van den Hondel, C. A., Sigoillot, J. C., Lesage-Meessen, L. and Asther, M. (2003) Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching applications. Appl. Microbiol. Biotechnol. 62, 349-355. https://doi.org/10.1007/s00253-003-1325-4
  13. Koseki, T., Fushinobu, S., Shirakawa, H. and Komai, M. (2009) Occurrence, properties, and applications of feruloyl esterases. Appl. Microbiol. and Biotechnol. 84, 803-810. https://doi.org/10.1007/s00253-009-2148-8
  14. Wahler, D. and Reymond, J. L. (2001) Novel methods for biocatalyst screening. Curr. Opin. Chem. Biol. 5, 152-158. https://doi.org/10.1016/S1367-5931(00)00184-8
  15. Gans, J., Wolinsky, M. and Dunbar, J. (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387-1390. https://doi.org/10.1126/science.1112665
  16. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacone, K. A., Lynch, B. A., MacNeil, I. A. and Minor, C. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541-2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  17. Cowan, D., Meyer, Q., Stafford, W., Muyanga, S., Cameron, R. and Wittwer, P. (2005) Metagenomic gene discovery: past, present and future. Trends Biotech. 23, 321-329. https://doi.org/10.1016/j.tibtech.2005.04.001
  18. Lorenz, P., Liebeton, K., Niehaus, F. and Eck, K. (2002). Screening novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequences space. Curr. Opin. Biotechnol. 13, 572-577. https://doi.org/10.1016/S0958-1669(02)00345-2
  19. Gilliespie, D. E., Rondon, M. R., Goodman, R. M., Handelsman, J. and Williamson, L. L. (2005). Metagenomic library from uncultured microorganisms (Osborn, A. M. and Smith, C. J., eds.) pp. 261-279, Molecular microbial ecology, Taylor and Francis group, New York Ch1, USA.
  20. Rashamuse, K. J., Magomani, V., Ronneburg, T. and Brady, D. (2009) A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous betalactamase activity on nitrocefin. Appl. Microbiol. Biotechnol. 83, 491-500. https://doi.org/10.1007/s00253-009-1895-x
  21. Donaghy, J., Kelly, P. F. and McKay, A. M. (1998) Detection of ferulic acid esterase production by Bacillus sp. and Lactobacilli. Appl. Microbiol. Biotechnol. 50, 257-260. https://doi.org/10.1007/s002530051286
  22. Bendten, J. D., Nielsen, H., von Heijnie, G. and Brunak, S. (2004) Improved prediction of signal peptide: SignalP 3. 0. J. Mol. Biol. 340, 783-795. https://doi.org/10.1016/j.jmb.2004.05.028
  23. Altschul, S. F., Madden, T. S., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  24. Jaeger, K. E., Dijkstra, B. W. and Reetz, M. T. (1999) Bacterial biocatalysis: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Ann. Rev. Microbiol. 53, 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
  25. Kang, C., Oh, K., Lee, M., Oh, T., Kin, B. and Yoon, J. (2011) A novel family VII esterase with industrial potential from compost metagenomic library. Microbial. Cell Fact. 10, 41-49. https://doi.org/10.1186/1475-2859-10-41
  26. Arpigny, K. L. and Jaeger, K. E. (1999) Bacterial lipolytic enzymes: classification and properties. J. Biochem. 343, 177-183. https://doi.org/10.1042/0264-6021:3430177
  27. Hermoso, J. A., Aparicio, S. J., Molina, R., Juge, N., Gonzalez, R. and Faulds, C. B. (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggest evolutive functional convergence in feruloyl esterase family. J. Mol. Biol. 338, 495-506. https://doi.org/10.1016/j.jmb.2004.03.003
  28. Tarbouriech, N., Prates, J. A, Fontes, C. M. and Davies, G. J. (2005) Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B from Clostridium thermocellum. Acta. Crystallogr. D. Biol. Crystallogr. 61, 194-197. https://doi.org/10.1107/S0907444904029695
  29. Kouker, G. and Jaeger, K. E. (1987) Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53, 211-213.
  30. Henke, E., Pleiss, J. and Bornscheuer, U. T. (2002) Activity of lipases and esterases towards tertiary alcohols: Insights into structure-function relationships. Angew. Chem. Int. Ed. 41, 3211-3213. https://doi.org/10.1002/1521-3773(20020902)41:17<3211::AID-ANIE3211>3.0.CO;2-U
  31. Henke, E., Bornscheuer, U. T., Schmit, R. D. and Pleiss, J. (2003) A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. Chembiochem. 6, 485-493.
  32. Pohlenz, H. D., Boidol, W., Schuttke, I. and Streber, W. R. (1992) Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. J. Bacteriol. 174, 6600-6607. https://doi.org/10.1128/jb.174.20.6600-6607.1992
  33. Zock, J., Cantwell, C., Swartling, J., Hodges, R., Pohl, T., Sutton, K., Rosteck, P. Jr., McGilvray, D. and Queener, S. (1994) The Bacillus subtilis pnbA gene encoding p-nitrobenzyl esterase: cloning, sequence and high-level expression in Escherichia coli. Gene 151, 37-43. https://doi.org/10.1016/0378-1119(94)90630-0
  34. Rashamuse, K., Burton, S. and Cowan, D. (2007) A novel recombinant ethyl ferulate esterase from Burkholderia multivorans. J. Appl. Microbiol. 103, 1610-1620. https://doi.org/10.1111/j.1365-2672.2007.03394.x
  35. Andersen, A., Svendsen, A., Vind, J., Lassen, S. F., Hjort, C., Borch, K. and Patkar, S. A. (2002) Studies on ferulic acid esterase activity in fungal lipases and cutinases. Colloids. Sur. Biointer. 26, 47-55. https://doi.org/10.1016/S0927-7765(01)00312-5
  36. Petersen, E. I., Valinger, G., Solkner, B., Stubenrauch, G. and Schwab, H. (2001) A novel esterase from Burkholderia gladioli shows high deacetylation activity on cephalosporins is related to $\beta$-lactamases and DD-peptidases. J. Biotechnol. 89, 11-25. https://doi.org/10.1016/S0168-1656(01)00284-X
  37. Bradford, M. M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. J. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Cited by

  1. Isolation and in silico characterization of novel esterase gene with β-lactamase fold isolated from metagenome of north western Himalayas vol.5, pp.4, 2015, https://doi.org/10.1007/s13205-014-0254-5
  2. Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development vol.36, pp.6, 2016, https://doi.org/10.3109/07388551.2015.1083939
  3. A novel feruloyl esterase from a soil metagenomic library with tannase activity vol.95, 2013, https://doi.org/10.1016/j.molcatb.2013.05.026
  4. Accessing Carboxylesterase Diversity from Termite Hindgut Symbionts through Metagenomics vol.22, pp.5, 2012, https://doi.org/10.1159/000342447
  5. Identification of a Novel Feruloyl Esterase by Functional Screening of a Soil Metagenomic Library pp.1559-0291, 2018, https://doi.org/10.1007/s12010-018-2832-1