DOI QR코드

DOI QR Code

Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

  • Im, Woo-Seok (Department of Neurology, Seoul National University Hospital, SNUMC) ;
  • Chung, Jin-Young (Department of Neurology, Seoul National University Hospital, SNUMC) ;
  • Bhan, Jae-Jun (Department of Neurology, Seoul National University Hospital, SNUMC) ;
  • Lim, Ji-Yeon (Department of Neurology, Seoul National University Hospital, SNUMC) ;
  • Lee, Soon-Tae (Department of Neurology, Seoul National University Hospital, SNUMC) ;
  • Chu, Kon (Department of Neurology, Seoul National University Hospital, SNUMC) ;
  • Kim, Man-Ho (Department of Neurology, Seoul National University Hospital, SNUMC)
  • Received : 2011.05.25
  • Accepted : 2011.08.03
  • Published : 2012.01.11

Abstract

Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside $Rg_3$ prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by ${\beta}$-galactosidase (${\beta}$-gal) staining. Staining with 4'-6-Diamidino-2-phenylindole verified that most adherent cells (93${\pm}$2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of ${\beta}$-gal-positive EPCs was decreased from 93.8${\pm}$2.0% to 62.5${\pm}$3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms.

Keywords

References

  1. Iwaguro, H., Yamaguchi, J., Kalka, C., Murasawa, S., Masuda, H., Hayashi, S., Silver, M., Li, T., Isner, J. M. and Asahara, T., Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration, Circulation 2002;105:732-738. https://doi.org/10.1161/hc0602.103673
  2. Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., Grunwald, F., Aicher, A., Urbich, C., Martin, H., Hoelzer, D., Dimmeler, S. and Zeiher, A. M., Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI), Circulation 2002;106:3009-3017. https://doi.org/10.1161/01.CIR.0000043246.74879.CD
  3. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A. and Finkel, T., Circulating endothelial progenitor cells, vascular function, and cardiovascular risk, N Engl J Med 2003;348:593-600. https://doi.org/10.1056/NEJMoa022287
  4. Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., Zeiher, A. M. and Dimmeler, S., Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease, Circ Res 2001;89:E1-7. https://doi.org/10.1161/hh1301.093953
  5. Schatteman, G. C., Hanlon, H. D., Jiao, C., Dodds, S. G. and Christy, B. A., Blood-derived angioblasts accelerate blood-fl ow restoration in diabetic mice, J Clin Invest 2000;106:571-578. https://doi.org/10.1172/JCI9087
  6. Tepper, O. M., Galiano, R. D., Capla, J. M., Kalka, C., Gagne, P. J., Jacobowitz, G. R., Levine, J. P. and Gurtner, G. C., Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures, Circulation 2002;106:2781-2786. https://doi.org/10.1161/01.CIR.0000039526.42991.93
  7. Fadini, G. P., Miorin, M., Facco, M., Bonamico, S., Baesso, I., Grego, F., Menegolo, M., de Kreutzenberg, S. V., Tiengo, A., Agostini, C. and Avogaro, A., Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus, J Am Coll Cardiol 2005;45:1449-1457. https://doi.org/10.1016/j.jacc.2004.11.067
  8. Lee, S. T., Chu, K., Jung, K. H., Park, H. K., Kim, D. H., Bahn, J. J., Kim, J. H., Oh, M. J., Lee, S. K., Kim, M. and Roh, J. K., Reduced circulating angiogenic cells in Alzheimer disease, Neurology 2009;72:1858-1863. https://doi.org/10.1212/WNL.0b013e3181a711f4
  9. Lee, S. T., Chu, K., Jung, K. H., Jeon, D., Bahn, J. J., Kim, J. H., Kun Lee, S., Kim, M. and Roh, J. K., Dysfunctional characteristics of circulating angiogenic cells in Alzheimer's disease, J Alzheimers Dis 2010;19:1231-1240.
  10. Lee, K. Y., Lee, Y. H., Kim, S. I., Park, J. H. and Lee, S. K., Ginsenoside-Rg5 suppresses cyclin E-dependent protein kinase activity via up-regulating p21Cip/WAF1 and down-regulating cyclin E in SK-HEP-1 cells, Anticancer Res 1997;17:1067-1072. https://doi.org/10.1097/01.cad.0000231475.77159.aa
  11. Liu, W. K., Xu, S. X. and Che, C. T., Anti-proliferative effect of ginseng saponins on human prostate cancer cell line, Life Sci 2000;67:1297-1306. https://doi.org/10.1016/S0024-3205(00)00720-7
  12. Xu, T. M., Xin, Y., Cui, M. H., Jiang, X. and Gu, L. P., Inhibitory effect of ginsenoside Rg3 combined with cyclophosphamide on growth and angiogenesis of ovarian cancer, Chin Med J (Engl) 2007;120:584-588.
  13. Yoo, J. H., Kwon, H. C., Kim, Y. J., Park, J. H. and Yang, H. O., KG-135, enriched with selected ginsenosides, inhibits the proliferation of human prostate cancer cells in culture and inhibits xenograft growth in athymic mice, Cancer Lett;289:99-110. https://doi.org/10.1016/j.canlet.2009.08.008
  14. Kiseljakovic, E., Jadric, R., Hasic, S., Ljuboja, L., Radovanovic, J., Kulenovic, H. and Winterhalter-Jadric, M., Mitochondrial medicine - a key to solve pathophysiology of xxi century diseases, Bosn J Basic Med Sci 2002;2:46-48.
  15. Bredesen, D. E., Rao, R. V. and Mehlen, P., Cell death in the nervous system, Nature 2006;443:796-802. https://doi.org/10.1038/nature05293
  16. Zhao, B., Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease, Neurochem Res 2009;34:630-638. https://doi.org/10.1007/s11064-008-9900-9
  17. Rehman, J., Li, J., Orschell, C. M. and March, K. L., Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors, Circulation 2003;107:1164-1169. https://doi.org/10.1161/01.CIR.0000058702.69484.A0
  18. Hur, J., Yoon, C. H., Kim, H. S., Choi, J. H., Kang, H. J., Hwang, K. K., Oh, B. H., Lee, M. M. and Park, Y. B., Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis, Arterioscler Thromb Vasc Biol 2004;24:288-293. https://doi.org/10.1161/01.ATV.0000114236.77009.06
  19. Yoon, C. H., Hur, J., Park, K. W., Kim, J. H., Lee, C. S., Oh, I. Y., Kim, T. Y., Cho, H. J., Kang, H. J., Chae, I. H., Yang, H. K., Oh, B. H., Park, Y. B. and Kim, H. S., Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases, Circulation 2005;112:1618-1627. https://doi.org/10.1161/CIRCULATIONAHA.104.503433
  20. Peralta, E. A., Murphy, L. L., Minnis, J., Louis, S. and Dunnington, G. L., American Ginseng inhibits induced COX-2 and NFKB activation in breast cancer cells, J Surg Res 2009;157:261-267. https://doi.org/10.1016/j.jss.2009.05.011
  21. Keum, Y. S., Park, K. K., Lee, J. M., Chun, K. S., Park, J. H., Lee, S. K., Kwon, H. and Surh, Y. J., Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng, Cancer Lett 2000;150:41-48. https://doi.org/10.1016/S0304-3835(99)00369-9
  22. Severino, J., Allen, R. G., Balin, S., Balin, A. and Cristofalo, V. J., Is beta-galactosidase staining a marker of senescence in vitro and in vivo?, Exp Cell Res 2000;257:162-171. https://doi.org/10.1006/excr.2000.4875
  23. Chu, K., Jung, K. H., Lee, S. T., Park, H. K., Sinn, D. I., Kim, J. M., Kim, D. H., Kim, J. H., Kim, S. J., Song, E. C., Kim, M., Lee, S. K. and Roh, J. K., Circulating endothelial progenitor cells as a new marker of endothelial dysfunction or repair in acute stroke, Stroke 2008;39:1441-1447. https://doi.org/10.1161/STROKEAHA.107.499236
  24. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., Li, T., Isner, J. M. and Asahara, T., Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization, Proc Natl Acad Sci U S A 2000;97:3422-3427. https://doi.org/10.1073/pnas.070046397
  25. Majd, S., Zarifkar, A., Rastegar, K. and Takhshid, M. A., Different fi brillar Abeta 1-42 concentrations induce adult hippocampal neurons to reenter various phases of the cell cycle, Brain Res 2008;1218:224-229. https://doi.org/10.1016/j.brainres.2008.04.050
  26. Abdul, H. M., Calabrese, V., Calvani, M. and Butterfi eld, D. A., Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloidbeta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease, J Neurosci Res 2006;84:398-408. https://doi.org/10.1002/jnr.20877
  27. Li, J., Wang, G., Liu, J., Zhou, L., Dong, M., Wang, R., Li, X., Li, X., Lin, C. and Niu, Y., Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo, Eur J Pharmacol;649:195-201. https://doi.org/10.1016/j.ejphar.2010.09.045
  28. Nakagami, Y., Inhibitors beta-amyloid-induced toxicity by modulating the Akt signaling pathway, Drug News Perspect 2004;17:655-660. https://doi.org/10.1358/dnp.2004.17.10.873917
  29. Burke, R. E., Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: Two approaches with therapeutic potential in the treatment of neurodegenerative disease, Pharmacol Ther 2007;114:261-277. https://doi.org/10.1016/j.pharmthera.2007.02.002
  30. Junyent, F., Alvira, D., Yeste-Velasco, M., de la Torre, A. V., Beas-Zarate, C., Sureda, F. X., Folch, J., Pallas, M., Camins, A. and Verdaguer, E., Prosurvival role of JAK/STAT and Akt signaling pathways in MPP+-induced apoptosis in neurons, Neurochem Int;57:774-782. https://doi.org/10.1016/j.neuint.2010.08.015
  31. Mattson, M. P., Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders, Antioxid Redox Signal 2006;8:1997-2006. https://doi.org/10.1089/ars.2006.8.1997
  32. Mattson, M. P., Apoptosis in neurodegenerative disorders, Nat Rev Mol Cell Biol 2000;1:120-129. https://doi.org/10.1038/35040009
  33. Zhang, G., Liu, A., Zhou, Y., San, X., Jin, T. and Jin, Y., Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia, J Ethnopharmacol 2008;115:441-448. https://doi.org/10.1016/j.jep.2007.10.026
  34. Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. M., Pals, S. T. and van Oers, M. H., Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis, Blood 1994;84:1415-1420.
  35. Vermes, I., Haanen, C., Steffens-Nakken, H. and Reutelingsperger, C., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fl uorescein labelled Annexin V, J Immunol Methods 1995;184:39-51. https://doi.org/10.1016/0022-1759(95)00072-I
  36. Kim, W. Y., Kim, J. M., Han, S. B., Lee, S. K., Kim, N. D., Park, M. K., Kim, C. K. and Park, J. H., Steaming of ginseng at high temperature enhances biological activity, J Nat Prod 2000;63:1702-1704. https://doi.org/10.1021/np990152b
  37. Imanishi, T., Hano, T. and Nishio, I., Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity, J Hypertens 2005;23:1699-1706. https://doi.org/10.1097/01.hjh.0000176788.12376.20
  38. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O. and et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc Natl Acad Sci U S A 1995;92:9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  39. Gire, V. and Wynford-Thomas, D., Reinitiation of DNA synthesis and cell division in senescent human fi broblasts by microinjection of anti-p53 antibodies, Mol Cell Biol 1998;18:1611-1621.
  40. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. and Lowe, S. W., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a, Cell 1997;88:593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
  41. Ryu, S. Y., Kwon, M. J., Lee, S. B., Yang, D. W., Kim, T. W., Song, I. U., Yang, P. S., Kim, H. J. and Lee, A. Y., Measurement of precuneal and hippocampal volumes using magnetic resonance volumetry in Alzheimer's disease, J Clin Neurol 2010;6:196-203. https://doi.org/10.3988/jcn.2010.6.4.196
  42. Lim, T. S., Iaria, G. and Moon, S. Y., Topographical disorientation in mild cognitive impairment: a voxel-based morphometry study, J Clin Neurol 2010;6:204-211. https://doi.org/10.3988/jcn.2010.6.4.204
  43. Glabe, C., Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer's disease, J Mol Neurosci 2001;17:137-145. https://doi.org/10.1385/JMN:17:2:137
  44. Fiala, J. C., Mechanisms of amyloid plaque pathogenesis, Acta Neuropathol 2007;114:551-571. https://doi.org/10.1007/s00401-007-0284-8
  45. Brenner, S. R., Roh, J. K., Lee, S. T., Chu, K., Jung, K. H., Lee, S. K. and Kim, M., Reduced circulating angiogenic cells in Alzheimer disease, Neurology;74:346; author reply 346-347. https://doi.org/10.1212/WNL.0b013e3181c776d4
  46. Lee, S. T., Chu, K., Jung, K. H., Jeon, D., Bahn, J. J., Kim, J. H., Kun Lee, S., Kim, M. and Roh, J. K., Dysfunctional characteristics of circulating angiogenic cells in Alzheimer's disease, J Alzheimers Dis;19:1231-1240.
  47. Donnini, S., Solito, R., Cetti, E., Corti, F., Giachetti, A., Carra, S., Beltrame, M., Cotelli, F. and Ziche, M., Abeta peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis, Faseb J;24:2385-2395. https://doi.org/10.1096/fj.09-146456
  48. Minamino, T., Miyauchi, H., Yoshida, T., Tateno, K., Kunieda, T. and Komuro, I., Vascular cell senescence and vascular aging, J Mol Cell Cardiol 2004;36:175-183. https://doi.org/10.1016/j.yjmcc.2003.11.010
  49. Zlokovic, B. V., Neurovascular mechanisms of Alzheimer's neurodegeneration, Trends Neurosci 2005;28:202-208. https://doi.org/10.1016/j.tins.2005.02.001
  50. Urbich, C. and Dimmeler, S., Endothelial progenitor cells: characterization and role in vascular biology, Circ Res 2004;95:343-353. https://doi.org/10.1161/01.RES.0000137877.89448.78
  51. Heo, J. H., Lee, S. T., Chu, K., Oh, M. J., Park, H. J., Shim, J. Y. and Kim, M., An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer's disease, Eur J Neurol 2008;15:865-868. https://doi.org/10.1111/j.1468-1331.2008.02157.x
  52. Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S. and Epstein, S. E., Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms, Circ Res 2004;94:678-685. https://doi.org/10.1161/01.RES.0000118601.37875.AC
  53. Nagata, T., Kai, H., Shibata, R., Koga, M., Yoshimura, A. and Imaizumi, T., Oncostatin M, an interleukin-6 family cytokine, upregulates matrix metalloproteinase-9 through the mitogen-activated protein kinase kinase-extracellular signal-regulated kinase pathway in cultured smooth muscle cells, Arterioscler Thromb Vasc Biol 2003;23:588-593. https://doi.org/10.1161/01.ATV.0000060891.31516.24
  54. Ghani, U., Shuaib, A., Salam, A., Nasir, A., Shuaib, U., Jeerakathil, T., Sher, F., O'Rourke, F., Nasser, A. M., Schwindt, B. and Todd, K., Endothelial progenitor cells during cerebrovascular disease, Stroke 2005;36:151-153. https://doi.org/10.1161/01.STR.0000149944.15406.16

Cited by

  1. Heat-processed ginseng enhances the cognitive function in patients with moderately severe Alzheimer's disease vol.15, pp.6, 2012, https://doi.org/10.1179/1476830512Y.0000000027
  2. Detachment of Mesenchymal Stem Cells with Trypsin/EDTA Has No Effect on Apoptosis Detection vol.32, pp.7, 2014, https://doi.org/10.1002/stem.1710
  3. Inhibitory effects of juglanin on cellular senescence in human dermal fibroblasts vol.68, pp.3, 2014, https://doi.org/10.1007/s11418-014-0817-0
  4. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview vol.32, pp.2, 2015, https://doi.org/10.1039/C4NP00080C
  5. Cellular lifespan and senescence: a complex balance between multiple cellular pathways vol.38, pp.02659247, 2016, https://doi.org/10.1002/bies.201670906
  6. Antiproliferative and Apoptosis-Inducing Activities of 4-Isopropyl-2,6-bis(1-phenylethyl)phenol Isolated from Butanol Fraction of Cordyceps bassiana vol.2015, pp.None, 2012, https://doi.org/10.1155/2015/739874
  7. Chemical constituents of Hericium erinaceum associated with the inhibitory activity against cellular senescence in human umbilical vascular endothelial cells vol.30, pp.6, 2012, https://doi.org/10.3109/14756366.2014.995181
  8. Looking for immortality: Review of phytotherapy for stem cell senescence vol.23, pp.2, 2012, https://doi.org/10.22038/ijbms.2019.40223.9522
  9. Ginsenoside Rg3 Alleviates Aluminum Chloride-Induced Bone Impairment in Rats by Activating the TGF-β1/Smad Signaling Pathway vol.69, pp.43, 2021, https://doi.org/10.1021/acs.jafc.1c04695