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It is an important issue to explore classroom environments which are conducive to 
developing students’ mathematical performance. This study explores the effects of 
different classroom environments (solution-demand and corresponding-time setting) 
on mathematical performances. Fourteen and eighteen prospective teachers were re-
quired to prove a task under different conditions respectively:  
a) Cognitive demand of multiple-solution corresponding time of three hours, and  
b) Cognitive demand of a right solution corresponding time of 20 minutes.  
We used SOLO as the assessment tool for mathematical performance from quality 
perspective. Significant differences were found in the quantity and quality of math-
ematical performance. The regular environment focusing on speed and accuracy 
were found to be directly linked to low levels of performance. The findings above 
provide implications to the cognitive benefits of multiple-solution demand and cor-
responding time setting.  
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PERSPECTIVE AND PURPOSE 
 
A number of studies (e.g., Silver & Stein, 1996) noted that the quality of mathematical 

opportunities, rather than the background or ability of students, is linked to low levels of 
performance and engagement in mathematics. Studying the classroom environmental fac-
tors that support and limit cognition development is important. How classrooms can be-
                                                        
1  This study was funded by Research Committee, University of Macau, Macao, China 

(MYRG092 (Y1-L2)-FED11-SXH). The opinions expressed in the article are those of the author. 
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come environments in which students have frequent opportunities to engage in higher-
level cognition has been an important subject of research over the last decades (Doyle, 
1983; Stein & Lane, 1996; Boston & Smith, 2009). Existing studies mainly focus on the 
following themes: scaffolding to inhibit / support engagement of students with the math-
ematical notion (Bayazit, 2006), processes to evaluate instructional decisions and the 
choice of materials to foster a challenging classroom climate by “mathematical task 
framework” (e.g. Stein, Smith, Henningsen, & Silver, 2000), and methods to select and 
implement task to sustain high-level engagement by a lesson protocol (e.g. Smith, Bill, & 
Hughes, 2008). However, these studies rarely link classroom environmental factors to 
student outcomes. This study focuses on how the different task demands may influence 
students` performance of proving a task. 

 
 

TASK AND STUDENT LEARNING 
 
Mathematical tasks are central to students’ learning because “tasks convey messages 

about what mathematics is and what doing mathematics entails” (NCTM, 1991, p. 24). 
Different tasks may place different cognitive demands on students (Hiebert & Wearne, 
1993). Different tasks may structure different ways students think and can serve to limit 
or to broaden their views of the subject matter and their actual experiences with mathe-
matics (Schoenfeld, 1994). Selection and implementation of high-level tasks are one of 
the necessary conditions for high-level cognition in classroom learning (e.g. Silver, 
Ghousseini, Gosen, Charalambous, & Strawhun, 2005). As a kind of high-level task, mul-
tiple solutions for a problem have been recommended both as a critical way to make con-
nectedness of one’s mathematical knowledge (NCTM, 2000) and as a tool to develop 
flexible, transferable knowledge (Yakes & Star, 2011), one’s problem-solving expertise 
(Silver, Ghousseini, Gosen, Charalambous, & Strawhun, 2005), and flexibility of mathe-
matic thinking (Krutetskii, 1976).  

Cai & Nie (2008 ) noted, “All too often students hold the misconception that there is 
only one ‘right’ way to approach and solve a problem and, therefore, they fail to develop 
flexibility in inventing and selecting appropriate strategies and finding solutions. This 
misconception might be largely due to their lack of experience in using multiple ways to 
approach a problem.” The statement above indicates a rare emphasis on the multiple-
solution approach to a problem in the classroom. For teacher education, multiple solu-
tions for a problem are not only a key feature of teaching as suggested in the study (e.g. 
Ball, 1993), but also are stressed in the classroom of high performing countries (Stigler & 
Hiebert, 1999).  

Waston (2007) confirmed the rationale of these notions from a theoretical perspective 
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of the relationship between teaching and learning based on the SOLO taxonomy by Biggs 
& Collis (1982). “The links” between teaching and learning are as follows: if learners are 
only offered unistructural situations (single solution), they are less likely to develop 
multistructural performance (multiple solutions). Such statements highlight the im-
portance of multiple solutions for a problem for preparation by a mathematics teacher.  

Leikin & Levav-Waynberg (2007) further indicated that in-service teachers have lim-
ited conception, that is, they have less knowledge in terms of the cognitive benefits of this 
practice. Silver, Ghousseini, Gosen, Charalambous & Strawhun (2005) emphasized that 
this practice failed to be supported by our regular environment. Doyle (1988) also identi-
fied the classroom-based factors stressing speed and accuracy influence students to de-
velop richness of strategy. Although numerous studies have been written about the ad-
vantages of multiple-solution task and the significance of multiple-solution tasks for a 
mathematics teacher, less experimental evidence exists for the cognitive benefits of mul-
tiple-solution demand and possible limitation of a regular classroom environment. Spe-
cially, discerning how different demands of solution types of tasks, namely, multiple-
solution demand versus single-solution demand, can influence the performance of “math-
ematical understanding” is not enough.  

Given the considerable amount of time required for the tasks of multiple solutions as 
compared with those of single solution, we found that three hours is the appropriate 
length of time for a multiple-solution-proof task of “the area formula of a trapezoid” in 
this current work. Conversely, in the most of Chinese classrooms, the longest time for a 
regular problem-solving activity in the naturalistic setting is 20 minutes, which is half of 
the length of a standard lesson. 

 
 

SOLO FRAMEWORK 
 
Biggs & Collis (1982) argued that the traditional quantitative assessment of learning 

based on aggregating units fails to chart longitudinal growth of conceptual knowledge 
and proposed the structure of observed learning outcomes (SOLO) taxonomy using quali-
ty methods that is, identifying the different levels of conceptual knowledge based on its 
use of available information and the complexity with which it is put together, namely, ex-
tended abstract, rational, multi-structural, uni-structural, and pre-structural levels. The 
SOLO framework is broadly applied to assess structures of learning results that occur 
within each Piagetian stage (Sensorimotor; Intuitive/Preoperational; Concrete Operational; 
Formal Operational) among diverse “learning-results”, such as mathematics, English, his-
tory, geography, economics, specially, reasoning, on school-related tasks and mathemati-
cal problem solving (Collis, Romberg & Jurdak, 1986). Can the SOLO framework be ap-
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plied to examine proof space multiple proving results? 
In the previous research, proof space was proposed the SOLO framework among the 

following different levels: extended abstract, rational, multi-structural, uni-structural, and 
pre-structural levels. The corresponding proof examples appear in (Sun, 2012). 

 
 

PROOF TASK OF “THE AREA FORMULA OF A TRAPEZOID” 
 
Tasks of area generally are widely addressed as core content of elementary mathemat-

ics by Chinese mathematicians. “Out-in Complementary Principle” (出入相补原理) ap-
plied to tasks of area and volume proposed by Liu Hui2

The proof task of “the area formula of a trapezoid” in traditional curriculum materials 
generally takes three styles in terms of explanation in Figure 1 (Mathematics Textbook 
Developer Group for Elementary School, 2003, p. 88); namely, a trapezoid is divided into 
2 triangles or a parallelogram and a triangle, or a trapezoid is reorganized into a parallel-
ogram by copying the same trapezoid. By re-collecting these well-made explanations, 
multiple-proofs would be easy tasks, low cognitive tasks. On the other hand, constructing 

 is regarded as the foundation of 
Chinese mathematics (cf. Siu, 1993). For example, by using this principle, Zhao Shuang 
(赵爽), the famous ancient Chinese mathematician, proved Pythagorean Theorem. Zhang 
Jing Zhong (张景中), a famous modern Chinese mathematician not only proved all geo-
metrical properties and theorems in secondary curriculum, but also proposed a creative 
curriculum reform plan, notion of educational mathematics, in mathematics education 
field (Zhang, 2005). On the other hand, multiple-solution-proof with area tasks reflects 
Chinese education philosophy of drawing inferences about other cases from one instance 
(ju yiyu er sanyufan “举一反三”). for example, Hua Hengfan (华蘅芳: 1833–1902) 
produced more than twenty proofs of Pythagorean Theorem. These studies suggest that 
multiple-solution-proof area task would be an important in mathematical education field. 
However, it is interesting to note that multiple-solution-proof area task become a topic 
scarcely explored in the field of mathematic curriculum due to the fact that it should be 
categorized geometric section by its reasoning nature and it could not be grouped into 
traditional Euclid’s geometry system by its content as a well-made algebra formula for 
area calculation in the beginning at primary period. Therefore, proof task of “the area 
formula” is new attempt for all prospective teachers. 

                                                        
2  Little is known about the life of Liu Hui (劉徽: AD 220–280?) merely because he lived so long 

ago, and many records were destroyed in book burnings throughout dynasties in ancient China. 
He was considered one of the most accomplished Chinese mathematicians of his time (From 
Math History Wiki). 
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creative proofs of “the area formula of a trapezoid” require to synthesise various geome-
try knowledge, which also place high cognitive demands on students (Sun, 2008). From 
this perspective, multiple proof task of a trapezoid would provide a flexible demand for 
prospective teachers of all levels. 

 

 
Figure 1. The example introducing three explanations of trapezoid area formula in  

Chinese textbook (Mathematics Textbook Developer Group for 
Elementary School, 2003, p.88) 

 
 

THE STUDY 
 
To explore a different cognitive demand and its effect on mathematical performance, 

two classroom environments were developed; one, henceforth, referred to as a regular 
environment (RE) with a right solution demand in accordance with the naturalistic time 
setting for a regular problem-solving activity of 20 minutes, and the other was the exper-
imental environment (EE) with multiple-solutions demand corresponding time setting of 
three hours. 

 
 

RESEARCH QUESTION 
 
What are the differences of “mathematical performance” under different conditions, 

namely, regular environment versus experimental environment? “Mathematical perfor-
mance” refers the quality (the structure extent of multiple proving) and quantities of prov-
ing (numbers of multiple proofs). 
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DATA SOURCE 

 
Our study is set in the context of a four-year program to obtain the degree in mathe-

matics education. In particular, our experiment was conducted within a one-semester 
course of mathematics teaching methods, addressed to 11/18 third-year prospective sec-
ondary teachers respectively whose entrance performance with same examination are not 
significant difference. In the pilot study, we found that two groups of prospective teachers 
held limited conception of problem solving and bounded knowledge of classroom envi-
ronments for high cognitive development, and none of them had tried to take two hours to 
solve a single problem. Due to tight time arrangement, there is one 3-hours-task in the 
course, which aims to aware their misconception of problem solving with single solution 
alone by providing experience of multiple solutions and enhance awareness of classroom 
time conditions for implementation multiple solution tasks3

 
. 

 
ANALYSES 

 
As part of a larger project (Sun & Chan, 2009), the research employed both quantita-

tive and qualitative methods. To examine the quantity and quality of mathematical per-
formance under different environments, we analyzed proof space, the collections of 
proofs of a statement produced by the individuals or groups (Leikin, 2009) by the SOLO 
assessment tool. The SOLO taxonomy developed by Biggs & Collis (1982) describes the 
different quality in terms of the structure of observed learning outcomes and are claimed 
to be applicable to any subject areas of increasing complexity in performance by a student. 
Practical data strongly support the validity of the tool. Specially, this tool was suggested 
to be applied to the area of mathematical problem solving (Collis, Romberg & Jurdak, 
1986).  

The following quality standards of proof performance of “the area formula of a trape-
zoid” were established according to the SOLO framework: A pre-structural proof might 
outline the proofs without valid methods. A unistructural proof might outline the proofs 
with separating or compensating methods. A multistructural proof might outline the 
proofs with both separating and compensating methods, but two methods are never 
brought together. A relational proof will prove the formula by an integrated separating 
and compensating methods. An extended abstract proof would cover the ground of the 

                                                        
3 A following discussion on how a teacher could develop learning opportunity for multiple solu-

tions and proving in classrooms was arranged at next lesson. 
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relational proof, but then, it might theorize the various methods mentioned above. The 
corresponding proof examples appear in the followings. 

0. Pre--structural proof 

A pre-structural proof might outline the proofs without valid methods. The pre-
structural proof in Figure 2 refers to the isosceles trapezoid proving only. 
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Figure 2. A pre-structural proof might outline the proofs without valid methods. 

1. Uni-structural proof  

A uni-structural proof might outline the proofs with separating or compensating 
methods. The proofs with separating methods require re-organizing a quadrangle or trian-
gle within a trapezoid. The proofs with compensating methods require re-organizing a 
polygon outside of the trapezoid.  

Proofs with separating methods:  
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E is the midpoint of CD.  
Connect AE and BE.  So, 
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Figure 3. The trapezoid is divided into 3 triangles. 
 

COMMENT: The trapezoid is divided into 3 triangles. The key point of the method is 
finding of midpoint, which make proving simple .Of course, any a point on the line DC is 
an available too. 

Proofs with compensating methods:  
 
 

 
 
 

 
 

Extend AB to E, so as to CDBE = .  
Extend DC to F，so as to ABCF = .  
Then FDAE =  and FDAE // .  
So AEFD is a parallelogram. 

2
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Figure 4.  A trapezoid is reorganized into a parallelogram by copying the same trapezoid. 
 

2. Multi-structural proof  

A multi-structural proof might outline the proofs with both separating and compensat-
ing methods above, but never bring two methods together. 
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3. Relational proof 

A relational proof will prove the formula by combining two methods above (separat-
ing methods, compensating methods) (cf. Figure 7).  

E is midpoint of BC. Connect AE. F is the intersection of extended line DC and ex-
tended line AE. 
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COMMENT: A trapezoid is skillfully transformed into a triangle with same area by re-
placing ∆ABE by ∆FCE. It is a creative proving. 
 

 

 
 

Figure 5. A relational proof combining separating methods with compensating methods 
 

4. Extended abstract proof  

An extended abstract proof would cover the ground of the relational proof, but then 
might synthesize various methods (either separating, or compensating). The following 
extended abstract proofs are developed by reverse thinking in a more advanced way, 
namely, constructing a figure from algebraic formula, 1/2h (a+b). 
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Figure 6. Extended abstract proofs 

 
 

THE TASK 
 
We chose “the area formula of a trapezoid” in the study as the proof task for the reason 

that there is rich proof from simple ones to complex ones, which easily detect diversity of 
understanding performance. Task 1 presented to the participants of 14 third-year prospec-
tive secondary teachers was as follows: 
 

Generate a right proving for “the area formula of a trapezoid” and then write down your 
proving in the worksheet in twenty minutes. 

 

We collected the worksheets after 20 minutes following their distribution. Participants 
of 18 third-year prospective secondary teachers were invited to prove task 2 in three 
hours. Task 2 presented to the participants of the study was as follows:  

Go on to generate your multiple proving for “the area formula of a trapezoid” as well 
as you can, and then write down multiple solutions in the worksheet.  
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Again, the worksheets were collected after 3 hours.  
 

 
 

PRELIMINARY RESULTS AND DISCUSSION 
 
Experimental environment is unusual requirement compared with their habit of prob-

lem solving. However, it is amazing students totally involved in the proof activity .None 
quitted in the whole process of three-hours-proving (We found it actually took at least 1 
hour to engage in this kind of task). 

Performance differences of “mathematical performance” under different conditions are 
impressive. 

1. Prospective teachers in an experimental environment generated much more 
solutions.  

Overall, average number of solutions of prospective teachers in an experimental envi-
ronment and control environment is 7.6 and 2.1 respectively. The corresponding multiple 
proof examples appear in Appendix. Maximum / Minimum number of solutions of pro-
spective teachers in an experimental environment and control environment is 22 /4 and 4 
/0 respectively (Table 1). Clearly, prospective teachers in an experimental environment 
generated much more solutions.  

Table 1. Distribution of number of solutions in different classroom environments 

Different classroom environments 
(Cognitive demand and time requirement) 

Maximum 
number of 
solutions 

Average 
number of 
solutions 

 Minimum 
number of 
solutions 

Control environment 
(One right solution in 20 minutes)  4 2.1 0 

Experimental environment 
(Multiple solutions in three hours)  22 7.6 4 

 

2. Prospective teachers in the experimental environment made more comprehen-
sive performance. 

It is impressive that prospective teacher in experimental environment generated 4 rela-
tional structure proof and 2 extended abstract proof .None of these examples appear in 
control environment (Table 2). Prospective teacher in the experimental environment made 
more comprehensive performance. 
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Table 2. Distribution of SOLO level of proof space in different classroom envi-
ronments  

Different classroom environ-
ments 
(cognitive demand and time re-
quirement) 

Pre-
structural 
level of 
proof 
space  

Uni-
structural 
level of 
proof 
space  

Multi-
struc-
tural of 
proof 
space  

Relation-
al struc-
ture level 
of proof 
space  

Extended 
abstract 
structure 
level of 
proof 
space  

Control environment 
(One right solution demand in 20 
minutes) 

3 5 2 0 0 

Experimental environment 
(Multiple-solutions demand in 
three hours) 

4 9 7 4 2 

3. Prospective teachers in experimental environment produce much more 
complex structure of proof space performance than those in regular environment. 

The most complex structure level of proof space in group level in experimental envi-
ronment and control environment is E (prove by combing separating methods with com-
pensating) / M (prove by either separating or compensating methods above, but never 
bring two methods together) respectively. The mode structure level of proof space in in-
dividual level in experimental environment and control environment is M/ U respectively 
(Table 3).  

Prospective teachers in experimental environment had better performance is obvious. 

Table 3. Distribution of SOLO structural level of proof space in group/ individual 
level in different classroom environments 

Different classroom environments 
(Cognitive demand and time requirements) 

The most complex 
structure level of proof 
space in group level 

The mode structure 
level of proof space 
in individual level 

Control environment 
(One right solution demand in 20 minutes)  M U 

Experimental environment 
(Multiple-solutions demand in three hours) E M 

 
The results above indicated that different cognitive demands shape different efforts 

and predetermine different cognitive opportunities under environment set. More im-
portant, traditional classroom environment relying totally on conceptions of proving solv-
ing—in one-way afford limited and fragmented conditions for multiple solution tasks is 
identified.  
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SIGNIFICANCE OF THE STUDY 

 
This study simply compares the effects of different solution demands and correspond-

ing time settings on understanding performances of a proof task. Despite effects of the 
pervious mathematical background between two groups, the findings indicate that, con-
sistent with the existing literature (Silver & Stein, 1996), there are significant differences 
were found in the quantity and quality of mathematical performance between two class-
room environment group. The experimental environment (multiple-solution corresponding 
time of three hours) are much more conducive to deep understanding than those of the 
regular environment (20 minutes with a right solution demand). This is to say that our 
regular classroom environment is, in fact, less conducive to deep understanding than the 
experimental environment. The results are useful in providing policy of environmental 
conditions of curriculum and assessment for development of high level cognition. Find-
ings of this study suggest task requirements are linked to levels of performance and en-
gagement in mathematics, which conclude that results of prior study on multiple-solution 
problems as a basic task selection and implementation mechanism (e.g. Stein, Smith, 
Henningsen & Silver, 2000) may be generalized to cover new domains (proof) and a new 
age group (prospective teachers).  

Current study is first step in providing experimental evidence to the cognitive benefits 
of multiple-solution demand and corresponding time setting. In light of our discussion, it 
is not surprising that the experimental environment shows an advantage absent from the 
regular environment. This present paper may provide an indication to expose a specific 
environment, multiple-solution demand, and corresponding time setting in classroom 
practice, which might enable us to see which parts of the educational environment, can be 
improved. We often take for grant to develop our classroom environment by our intuitions, 
experiences and common senses (e.g., Regular mathematical class time in mainland Chi-
na, Hong Kong, and Macao is within 1 hour. Regular mathematical requirement is, rather 
than multiple solutions, a single solution). This study reminds us how our policies of set-
ting task requirement and time could or could not develop understanding performance in 
classrooms. Future work will be required to further identify the potentials of affective 
benefits (e.g., persistence, flexibility). The future investigation how our time requirement 
and solution requirement would shape student thinking habit in a long run are needed. 

Similar results had been found with “Mid-Point theorem of triangles” (Sun & Chan, 
2009), “area formula of a triangle”, “the intercept theorem” or Thales’ theorem. Future 
work will be required to further identify the extent of the conclusions. The more rigor ex-
periment studies with control group (either using secondary students or using other multi-
ple solutions tasks) as sample are also recommended. 
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APPENDIX  

MULTIPLE PROOF EXAMPLES 
 

1. Method of Chan: Creating two triangles:  
 

 
 

Connect AC. The triangle ∆ABC and ∆ACD have the same height h. So 
 

2
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22
hbabhah

SSS ACDABCABCD

+
=+=

+= ∆∆

 
COMMENT: This is a simplest proving method among all methods presented by the text-
books of different countries. 
 

2. Method of Bin: Creating three triangles: 
 

 
 

E is the midpoint of CD. Connect AE and BE.  So, 
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COMMENT: The trapezoid is divided into 3 triangles. The key point of the method is 
finding of midpoint, which make proving simple .Of course, any a point on the line DC is 
an available too. 
 

3. Method of Hau: Creating multiple triangles:  
E is the 1/m point of CD (divide CD into m equal sections). Connect AE and BE.  So, 
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SABCD =1/2 1/m a h m+1/2bh=
2

h)ba( +  

COMMENT: This is an extended method from 2 sections to m sections above. 
 

4. Method of Lin: Creating into a triangle and a rectangle: 
 

 
If it is a right-angle one, the trapezoid can be divided into a triangle and a rectangle by 

its height. Suppose 
hADbCDaAB === ，，  

( )
22

habS −
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COMMENT: A right-angle trapezoid can be divided into a triangle and a rectangle. The 
formula of a right-angle trapezoid is proved. 

If it is not a right-angle one, the trapezoid can be made a right-angle one by drawing 
its height. Suppose BG = x, then 
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COMMENT: A trapezoid can be divided into a triangle and a right-angle trapezoid. Based 
on the conclusion on the right-angle trapezoid above, the formula of a trapezoid is proved. 
This solution includes two steps from particular one to general one. 
 

5. Method of Xiang: Creating into a triangle and a parallelogram:  
 

 
Draw BE//AD. E is the intersection of CD and BE.  
Then ABED is a parallelogram because aABDE == , 
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COMMENT: A trapezoid is divided into a triangle and a parallelogram. 

6. Method of Zhu: Re-shaping into a triangle by cutting : 
 

 
 

E is midpoint of BC. Connect AE. F is the intersection of extended line DC and ex-
tended line AE. 
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Then 

2
)( hbaSS ADFABCD

+
== ∆

 
COMMENT: A trapezoid is skilfully transformed into a triangle with same area by re-
placing ∆ABE by ∆FCE. It is a creative proving. 
 

7. Method of Chang: Re-shaping into a triangle by extending: 
 

 
 

Extend BA and DC. E is intersection of BA and CD. Draw height EG and height AF. 
G is the intersection of EG and BC. F is the intersection of AF and BC. 

Because CB//AD , the triangle EAD is similar to the triangle EBC, 
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Then  

ab
ahEH
−

=
 

2
)(

2
EH

2
)EH(

EE

hbabha
SSS ADBCABCD

+
=−

+
=

−= ∆∆

 
COMMENT: A trapezoid is extended into a triangle by extending its two sides. The EH 
was eliminated according to the property of the similar triangle. 
 

8. Method of Xian: Re-shaping into a triangle by extending: 
Extend AB to E, so as to CDBE = . Extend DC to F, so as to ABCF = . Then FDAE =  

and FDAE // . So AEFD is a parallelogram. 
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A
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COMMENT: A trapezoid is reorganized into a parallelogram by copying the same trape-
zoid. 
 

9. Method of Feng: Re-shaping into a parallelogram by extending : 

 
 

Draw DACE //  such that line CE passes through point E. Then we have AECD is a 
parallelogram. 
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COMMENT: A trapezoid is reorganized into a parallelogram by making a parallel line of 
a side. 
 

10. Method of Wei rectangles -re-shaping into two rectangles by connecting: 
 

 
 

Draw the symmetry points E and F of D and C based on symmetry axis AB. 
CDEF is a rectangle，and bEFCD == ， hDECF 2== ，So 
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COMMENT: The two same trapezoids are reorganized into a rectangle by making a 
symmetry figure. 
 

The End 




