DOI QR코드

DOI QR Code

Hydrophilic Graphite Nanoparticles Synthesized by Liquid Phase Pulsed Laser Ablation and Their Carbon-composite Sensor Application

액상 펄스 레이저 어블레이션에 의한 친수성 그라파이트 나노입자의 제조 및 센서 응용

  • Choi, Moonyoul (Energy System Division, School of Mechanical Engineering, Pusan National University) ;
  • Kim, Yong-Tae (Energy System Division, School of Mechanical Engineering, Pusan National University)
  • 최문열 (부산대학교 기계공학부 에너지시스템전공) ;
  • 김용태 (부산대학교 기계공학부 에너지시스템전공)
  • Received : 2012.11.13
  • Accepted : 2012.11.21
  • Published : 2012.11.30

Abstract

It is widely recognized that it is hard to prepare hydrophilic graphite nanoparticles because of their high crystallinity and inert characteristics. In this study, we successfully synthesized the hydrophilic graphite nanoparticles by using liquid phase pulsed laser ablation method which has been actively employed for the thin film deposition up to now. The obtained hydrophilic graphite showed an ultra-high dispersion stability in water, because the hydrophilic functional groups like carboxyl and carbonyl group was simultaneously introduced onto the graphite surface with the nanoparticle formation, as confirmed by FT-IR and zeta potential measurements. Finally, a markedly enhanced gas sensing ability for acetone was shown in comparison with the conventional carbon black for the carbon polymer composite sensor with polyethyleneglycol (PEG).

일반적으로 그라파이트는 높은 결정성으로 인해 나노입자상으로 제조하기 어려우며 특히 표면에 친수성을 부여하기가 쉽지 않은 재료로 알려져 왔다. 본 연구에서는 박막 증착에 널리 활용되어 오던 펄스 레이저 어블레이션 기법을 액상에 적용하여 친수성이 부여된 그라파이트 나노입자를 합성하였다. 타겟으로는 그라파이트 로드를 사용하였으며 레이저 출력을 조절하며 액상에서 어블레이션을 실시한 결과 매우 높은 분산 안정성을 갖는 친수성 그라파이트 나노입자를 합성할 수 있었다. FT-IR 분석결과 합성된 친수성 그라파이트 나노입자는 카르복시기 및 카르보닐기 등이 나노입자의 형성과 동시에 표면에 도입된 것이 밝혀졌으며 이는 제타 포텐셜로도 확인할 수 있었다. 최종적으로 Polyethyleneglycol(PEG)과 컴포지트하여 아세톤 센서에 적용한 결과 기존의 카본 블랙 대비 우수한 감도를 나타내었다.

Keywords

References

  1. N. S. Lewis, 'Comparisons between Mammalian and Artificial Olfaction Based on Arrays of Carbon Black Polymer Composite Vapor Detectors', Acc. Chem. Res., 37, 663 (2004). https://doi.org/10.1021/ar030120m
  2. M. A. Ryan, A. V. Shevade, H. Zhou, and M. L. Homer, 'Polymer-Carbon Black Composite Sensors in an Electronic Nose for Air-Quality Monitoring', MRS Bull., 29, 714 (2004). https://doi.org/10.1557/mrs2004.208
  3. B. J. Doleman, E. J. Severin, and N. S. Lewis, 'Trends in odor intensity for human and electronic noses: Relative roles of odorant vapor pressure vs. molecularly specific odorant binding', Proc. Natl. Acad. Sci. U.S.A., 95, 5442 (1998). https://doi.org/10.1073/pnas.95.10.5442
  4. X. M. Dong, R. W. Fu, M. Q. Zhang, B. Zhang, and M. Z. Rong, 'Electrical resistance response of carbon black filled amorphous polymer composite sensors to organic vapors at low vapor concentrations', Carbon, 42, 2551 (2004). https://doi.org/10.1016/j.carbon.2004.05.034
  5. J. Lee, E. J. Park, J. Choi, J. Hong, and S. E. Shim, 'Polyurethane/PEG-modified MWCNT composite film for the chemical vapor sensor application', Synth. Met., 160, 566 (2010). https://doi.org/10.1016/j.synthmet.2009.12.004
  6. M. L. Y. Sin, G. C. T. Chow, G. M. K. Wong, and W. J. Li, 'Ultralow-Power Alcohol Vapor Sensors Using Chemically Functionalized Multiwalled Carbon Nanotubes', IEEE Trans. Nanotechnol., 6, 571 (2007). https://doi.org/10.1109/TNANO.2007.900511
  7. L. Vaisman, H. D. Wagner, and G. Marom, 'The role of surfactants in dispersion of carbon nanotubes', Adv. Colloid Interface Sci., 37, 128 (2006) .
  8. L. Niu, Y. Luo, and Z. Li, 'A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol)', Sens. Actuators B, 126, 361 (2007). https://doi.org/10.1016/j.snb.2007.03.018
  9. Y.-T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, and T. Mitani, 'Fine Size Control of Platinum on Carbon Nanotubes: From Single Atoms to Clusters', Angew. Chem. Int. Ed., 45, 407 (2006). https://doi.org/10.1002/anie.200501792
  10. Y.-T. Kim and T. Mitani, 'Competitive effect of carbon nanotubes oxidation on aqueous EDLC performance: Balancing hydrophilicity and conductivity', J. Power sources, 158, 1517 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.069
  11. Y.-T. Kim, K. Ohshima, and T. Mitani, 'Formation of Single Pt Atoms on Thiolated Carbon Nanotubes Using a Moderate and Large-Scale Chemical Approach', Adv. Mater., 18, 2634 (2006). https://doi.org/10.1002/adma.200502019
  12. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, and Z. Du, 'Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes', J. Phys. Chem. B, 107, 3712 (2003). https://doi.org/10.1021/jp027500u
  13. Y.-T. Kim and T. Mitani, 'Oxidation treatment of carbon nanotubes: An essential process in nanocomposite with RuO2 for supercapacitor electrode materials', Appl. Phys. Lett., 89, 033107 (2006). https://doi.org/10.1063/1.2221872
  14. S. Shang, L. Li, X. Yang, and Y. Wei, 'Polymethylmethacrylate- carbon nanotubes composites prepared by microemulsion polymerization for gas sensor', Comp. Sci. Technol., 69, 1156 (2009). https://doi.org/10.1016/j.compscitech.2009.02.013