Practical Factors Controlling in vitro Multiplication and Rooting in Empetrum nigrum var. japonicum, an Endangered Woody Species

So-Young Park¹, Yong-Wook Kim² and Heung-Kyu Moon²*

¹Department of Horticultural Science, Chungbuk National University, Cheongju 361-763, Korea
²Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Korea

Abstract - The plant Empetrum nigrum, valued in the traditional system of medicine, is well known for its antibacterial, antifungal, and antioxidant properties. In the present work, the effect of removal of shoot apical meristem (SAM) on shoot proliferation was studied. It was observed that removal of SAM promoted shoot proliferation whereas intact tip resulted in higher survival percentage. Further, the effect of different concentrations of BA on above was also studied. During root formation the effect of light quality after treatment with IBA was investigated. For rooting, continuous red light without IBA resulted in maximum rooting percentage. The above factors when taken into consideration during micropropagation of this endangered plant can result in healthier plantlets. The results show that the species could be successfully conserved by in vitro propagation system.

Key words - Empetrum nigrum, Micropropagation, SAM, Shoot tip removal, Red light

Introduction

Empetrum nigrum var. japonicum (crowberry), a medicinal woody plant belongs to Ericaceae family, is one of the native berries of South Korea, especially on top of Mt. Halla (Han et al., 2010). Empetrum is a small genus of dwarf (10-30 cm in height) evergreen shrubs. The leaves and stems are used in Denaina medicine for diarrhea and stomach problems; they are boiled or soaked in hot water, and the strained liquid is consumed. Its extract exhibits diuretic and spasmyotic properties, aerial parts used in folk medicine to cure liver and kidney disease (Krasnov et al., 2000), certain components show antibacterial and fungicidal activity (McCutcheon et al., 1994). Several reports have indicated the antioxidant potential of this plant (Kakkonen et al., 1999; Kim et al., 2009; Kim et al., 2011). Although the E. nigrum var. japonicum is important as a medicinal material and one of Korean genetic resources, few reports have been focused on in vitro micropropagation of the species except the report by Han et al. (2010). Herein, we report the results for in vitro shoot multiplication and rooting of rooting-recalcitrant E. nigrum and it show that the possibility of improving the shoot proliferation by removing SAM and rooting by red light irradiation.

Materials and Methods

Plant materials

Two years in vitro maintained Empetrum nigrum var. japonicum in hormone-free Woody plant medium (WPM; Lloyd and McCown, 1981) medium were used for the experiments. For rooting, 2 cm-length of shoots were used.

Shoot multiplication

For shoot proliferation, two types of plant material were used, shoot with intact apical meristem (ST) and shoot without apical meristem (N-ST). In both the BA concentration were varied as 0.2, 0.5, 1.0 mg/L with WPM as the basal medium.

Rooting

For rooting two sets of shoots were used. In one set the bottom of shoot was soaked into 1,000 mg/L IBA for 30 min, after that placed into hormone-free WPM containing sucrose

*Corresponding author. E-mail : hkmoon@forest.go.kr

© 2012 by The Plant Resources Society of Korea
30 g/L and solidified with 2.5 g/L gelrite. The other set of shoots did not receive the IBA treatment. Thereafter both these sets of shoots received light treatments as indicated in Table 1.

For red irradiation, LED system (GF-320s) with, peak emission at 650 nm was used and fluorescent lamp was used for white light. The light intensity in all kinds of light treatment was 40 \(\mu \text{mol m}^{-2}\text{s}^{-1}\) PPF. All the cultures were kept at 23±1°C with 16/8-hr (day/night) photoperiod and cultured for 8 weeks.

Statistics
All experiments were repeated three times with ten replications. Statistical significance was determined using Duncan’s multiple range test (p ≤ 0.05) for a multi-comparison of means (SAS Institute, Cary, N.C.). Values marked with similar letters are not significantly different.

Table 1. Effect of apical meristem elimination from shoot explants on shoot multiplication from in vitro grown Empetrum nigrum var. japonicum after 8 weeks of culture

<table>
<thead>
<tr>
<th>BA (mg/L)</th>
<th>Survival rate (%)</th>
<th>No of shoots (per explant)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST</td>
<td>N-ST</td>
</tr>
<tr>
<td>0.0</td>
<td>93.3</td>
<td>83.3</td>
</tr>
<tr>
<td>0.2</td>
<td>100.0</td>
<td>93.5</td>
</tr>
<tr>
<td>0.5</td>
<td>100.0</td>
<td>93.3</td>
</tr>
<tr>
<td>1.0</td>
<td>100.0</td>
<td>92.1</td>
</tr>
</tbody>
</table>

ST Normal shoot with apical meristem
N-ST Apical meristem eliminated-shoot

Results and Discussion
As previous report (Han et al., 2010) had shown that WPM medium was found to be the best medium for growth of Empetrum nigrum var. japonicum, in the present study it was used for shoot multiplication in combination with different concentrations of BA. It was observed that increasing BA concentration did not have any significant effect on shoot survival or proliferation. Further, the effect of removal of shoot apical meristem (SAM) from the explants was also studied. The SAM consists of a small group of undifferentiated and dividing cells with dense cytoplasm. Potten and Loeffler (1990) on the basis of several criteria suggested that the cells in the meristem can be classified as stem cells. These cells have the unique abilities to proliferate, to replace themselves when required, to give rise to a variety of differentiated cell types, and also can regenerate a new meristem if damaged (Sussex, 1952). Also, Reddy et al. (2004) reported that these
Practical Factors Controlling \textit{in vitro} Multiplication and Rooting in \textit{Empetrum nigrum} \textit{var. japonicum}, an Endangered Woody Species

stem cells are responsible for initiation of lateral organs. In case of \textit{Empetrum nigrum} \textit{var. japonicum}, it was found that explants without SAM had a lower survival percentage (Table 1). Barton and Poethig (1993) while working on shoot apical meristem fewer mutants of \textit{Arabidopsis} observed that conditions that promote shoot regeneration \textit{in vitro} in the wild type could not result in normal shoot formation in the explants of mutant type. The latter only gave rise to abnormal leaves or shoots but its number was lesser than in wild type. They suggested that the gene \textit{stm-1} interferes with shoot formation \textit{in vitro} but an organized SAM is not required for leaf and shoot formation both in culture and \textit{in situ} (Barton and Poethig, 1993). Our results also indicate that in \textit{Empetrum} presence of SAM is not essential for shoot formation \textit{in vitro} (Fig. 1). In fact removal of shoot tip in the present genus resulted in higher shoot proliferation by suppression of apical dominance.

During rooting it was observed that in the absence of IBA highest rooting percentage was observed in shoots kept in continuous red light (39%) followed by shoots kept under continuous light for eight weeks (Fig. 2). This indicates that red light alone is sufficient for root development in \textit{Empetrum}. Possibly other wavelengths of light exert a negative effect on root formation in this genus as rooting percentage reduced to

Table 2. Description of light and hormonal treatments for rooting in \textit{E. nigrum} \textit{var. japonicum}

<table>
<thead>
<tr>
<th>Treatment</th>
<th>IBA</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Light effect</td>
<td></td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>CL (Continuous light)</td>
<td>-</td>
<td>L L L L L L L L</td>
</tr>
<tr>
<td>DL (Dark \rightarrow light)</td>
<td>-</td>
<td>D D L L L L L L</td>
</tr>
<tr>
<td>RL (Red \rightarrow light)</td>
<td>-</td>
<td>R R L L L L L L</td>
</tr>
<tr>
<td>CR (Continuous red)</td>
<td>-</td>
<td>R R R R R R R R</td>
</tr>
<tr>
<td>E2: Light & IBA effect</td>
<td></td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>CL (Continuous light)</td>
<td>-</td>
<td>L L L L L L L L</td>
</tr>
<tr>
<td>IL (IBA + light)</td>
<td>O</td>
<td>L L L L L L L L</td>
</tr>
<tr>
<td>IRL (IBA+red \rightarrow light)</td>
<td>O</td>
<td>R R L L L L L L</td>
</tr>
</tbody>
</table>

Red irradiation: LED system (GF-320s), peak emission: 650 nm.

IBA treatment: Immersion into IBA 1,000mg L-1 solution for 30 min.

![A](image1.png) ![B](image2.png)

Fig. 2. Effect of light (A) and IBA treatment (B) on rooting from \textit{in vitro} shoots of \textit{E. nigrum} \textit{var. japonicum}. (Error bars represent for standard errors of mean, and the letter on the error bars represent for significance by Duncan’s multiple range test, p \(\leq 0.05\)).
37% in white light. Further, it was also seen that providing red light for only first two weeks followed by continuous white light resulted in poor rooting. Taiz and Zeiger (1991) reported that growth and development in plants is influenced by the quality, intensity and duration of light. Similarly, growth, morphology and differentiation of in vitro plantlets are also affected by light (Economou and Read, 1987). Red light has been shown to significantly enhance stem elongation in Pelargonium plantlets (Appelgren, 1991); higher root to shoot ratio in potato plantlets (Aksenova et al., 1994) and affect morphology rather than growth of potato plantlets when used as main light source (Miyashita et al., 1995).

However, in the present study when the shoots are pretreated with IBA, root formation was considerably reduced (31%) even in presence of continuous light (Fig. 2). When after IBA treatment, the shoots were kept in red light for two weeks and then transferred to white light, the rooting percentage improved a little (33%). Any plant under normal environmental conditions can proceed via either of two developmental pathways: photomorphogenesis in the light and skotomorphogenesis in the dark (von Arnim and Deng, 1996). The choice that a plant makes between these two pathways is crucial for its development and also ensures survival in its environment. To select the appropriate pathway, plants possess several photoreceptors to detect the different qualities and quantities of light (Fankhauser and Chory, 1997). Several physiological experiments have indicated that auxin is the major plant hormone closely connected with light signal transduction (Neff et al., 1999; Steindler et al., 1999). In addition to hypocotyl elongation, auxin affects numerous aspects of plant growth and development such as gravitropism, lateral root differentiation and apical dominance (Estelle and Klee, 1994; Hobbie, 1998). Auxin has different effects on different tissues: it stimulates cell elongation in stems and hypocotyls, whereas in roots it stimulates cell division for lateral root formation (Estelle and Klee, 1994; Hobbie, 1998). However, in Empetrum auxin pre-treatment for 30 min has a negative influence on rooting. This is similar to the findings of Nakazawa et al. (2001) in Arabidopsis. They observed that the gene product of DFL1 gene (an auxin responsive gene) in Arabidopsis inhibits

Fig. 3. Effect of light quality on rooting in E. nigrum var. japonicum after 8 weeks of culture. A: IBA + light (IL), B: IBA + red to light (IRL), C: Dark to light (DL), D: Continuous red irradiation.
lateral root cell differentiation in light though it has no effect on primary root formation. Since the lateral roots emerge from the primary root by a series of divisions in the pericycle cells (Malamy and Benfey, 1997) probably in Empetrum auxin exposure has a negative effect on this activity. The positive effect of red light is seen even in presence of IBA indicating that in this genus the quality of light can overcome the inhibition by auxin.

Thus the present study indicates that SAM and light quality can affect in vitro propagation of Empetrum nigrum var. japonicum. This information can be used for increasing the efficiency of micropropagation of this endangered medicinal plant.

Acknowledgement

This work was supported by the research grants of the Korean Forest Research Institute and Chungbuk National University in 2012.

Literature Cited

(Received 10 October 2012 ; Revised 6 December 2012 ; Accepted 14 December 2012)