DOI QR코드

DOI QR Code

Application of Predictive Microbiology for Microbiological Shelf Life Estimation of Fresh-cut Salad with Short-term Temperature Abuse

PMP 모델을 활용한 시판 Salad의 Short-term Temperature Abuse 시 미생물학적 유통기한 예측에의 적용성 검토

  • Received : 2012.08.03
  • Accepted : 2012.09.28
  • Published : 2012.10.30

Abstract

The aim of this study was to investigate the growth of aerobic bacteria in fresh-cut salad during short-term temperature abuse ($4{\sim}30^{\circ}C$temperature for 1, 2, and 3 h) for 72 h and to develop predictive models for the growth of total viable cells (TVC) based on Predictive food microbiology (PFM). The tool that was used, Pathogen Modeling program (PMP 7.0), predicts the growth of Aeromonas hydrophila (broth Culture, aerobic) at pH 5.6, NaCl 2.5%, and sodium nitrite 150 ppm for 72 h. Linear models through linear regression analysis; DMFit program were created based on the results obtained at 5, 10, 20, and $30^{\circ}C$ for 72 h ($r^2$ >0.9). Secondary models for the growth rate and lag time, as a function of storage temperature, were developed using the polynomial model. The initial contamination level of fresh-cut salad was 5.6 log CFU/mL of TVC during 72 h storage, and the growth rate of TVC was shown to be 0.020~1.083 CFU/mL/h ($r^2$ >0.9). Also, the growth tendency of TVC was similar to that of PMP (grow rate: 0.017~0.235 CFU/mL/h; $r^2=0.994{\sim}1.000$). The predicted shelf life with PMP was 24.1~626.5 h, and the estimated shelf life of the fresh-cut salads with short-term temperature abuse was 15.6~31.1 h. The predicted shelf life was more than two times the observed one. This result indicates a 'fail safe' model. It can be taken to a ludicrous extreme by adopting a model that always predicts that a pathogenic microorganism will grow even under conditions so strict as to be actually impossible.

시판 샐러드제품의 구입부터 가정까지의 이동 및 소비직전까지 적정하지 않은 온도관리를 예상하여 단기간의 온도 abuse 상황을 설정하고 미생물적 유통기한을 도출하였다. 보다 효율적인 유통기한 설정을 위해 예측미생물학의 3단계 모델인 PMP 7.0을 활용하여 그 활용가능성을 조사하였다. 부적절한 온도에서의 abuse 시간이 증가할수록 미생물은 빠르게 증식하여 샐러드 제품의 유통기한 시점으로 판단되는 log 7 CFU/mL에 도달하는 시간이 짧아졌다. 온도가 증가할수록 0.020에서 1.083까지 grow rate도 증가했으며, 이 모델의 적합도를 나타내는 $r^2$의 값은 전 실험구에서 0.9 이상을 나타내었다. PMP 7.0으로 예측된 미생물의 증식양상은 온도에 따라 0.017~0.235 CFU/mL/hr로 나타났으며, 모든 구에서 0.994~1.000까지 높은 수준의 $r^2$을 나타내었다. 또 PMP를 활용하여 도출한 유통기한의 경우도 온도가 증가함에 따라 감소하였다. 실측된 값을 바탕으로 한 샐러드 제품의 유통기한은 유통매장에 도착하기까지 48시간 소요될 것으로 예상할 경우 유통기한은 109.1~63.0시간까지로 추정되며 PMP로 도출된 유통기한(24.1~626.5시간)에 비해 짧게 나타났다. 이는 온도 abuse에 의한 영향 및 fail safe에 해당하는 결과로 안전성 측면에서는 유리하나 관리적 측면에서 과도한 기준의 설정 등을 통해 관리비용의 증가 등의 단점이 발생할 수 있는 것으로 판단된다. 즉, 예측미생물학을 활용하여, 유통기한 설정 및 품질관리를 위한 초기 미생물 기준 설정시 특정 식품에 적용하는 것은 효율적인 시도가 될 것이나, 이를 전반적인 기준으로 설정하는 것은, 통계적, 실제적 오류 발생이 가능할 것으로 오히려 관련 효율을 저해할 수 있을 것이다.

Keywords

References

  1. KFDA (2007) Notification No. 2007-63, Korea Food and Drug Administration, Seoul, Korea, p 29-31
  2. Koo MS, Kim YS, Shin DB, Oh SW, Chun HS (2007) Shelf-life of prepacked kimbab and sandwiches marketed in convenience stores at refrigerated condition. J Food Hyg Safety, 22, 323-331
  3. KFDA (2011) Guidelines on shelf life of foods, Korea Food and Drug Administration, Seoul, Korea, p 20-23
  4. Steven CI, Melody AF, Greg MB, Barbara HI, John PN, Donald WS (2007) Predicting Pathogen Growth during Short-Term Temperature Abuse of Raw Pork, Beef, and Poultry Products: Use of an Isothermal-Based Predictive Tool. J Food Protection, 70, 1445-1456
  5. Zwietering MH, Jongenburger I, Rombouts FM, Triet KV (1990) Modeling of the Bacterial Growth Curve. Applied and environmental microbiology, 56, 1875-1881
  6. Rosso L, Lobry JR, Bajard S, Flandrois JP (1995) Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth. Applied and environmental microbiology, 61, 610-616
  7. Panisello PJ, Quantick PC (1998) Application of Food MicroModel predictive software in the development of Hazard Analysis Critical Control Point (HACCP) systems. Food Microbiology, 15, 425-439 https://doi.org/10.1006/fmic.1998.0195
  8. Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23, 277-294 https://doi.org/10.1016/0168-1605(94)90157-0
  9. Bemrah N, Sanaa M, Cassin MH, Griffiths MW, Cerf O (1998) Quantitative risk assessment of human listeriosis from consumption of soft cheese made from raw milk. Prev Vet Med, 37, 129-45 https://doi.org/10.1016/S0167-5877(98)00112-3
  10. Ross T, McMeekin TA (1994) Predictive Microbiology. Int J Food Microbiol, 23, 241-264 https://doi.org/10.1016/0168-1605(94)90155-4
  11. Lammerding AM, Fazil A (2000) Hazard identification and exposure assessment for microbial food safety risk assessment. Int J Food Microbiol, 58, 147-57 https://doi.org/10.1016/S0168-1605(00)00269-5
  12. Robin CM, Xuewen L (2004) Modeling microbial responses in food. CRC Press, Florida, USA, p 185-187
  13. Lee YS, Ha JH, Park KH, Lee SY, Choi YJ, Lee DH, Park SH, Moon ES, Ryu K, Shin HS, Ha SD (2008) Survey on Storage Temperature of Domestic Major Chilled Foods in Refrigerator. J. Fd Hyg Safety, 23, 304-308
  14. Isabel W, Virginia NS (1997) Use of predictive microbiology in microbial food safety risk assessment. Int J Food Microbial, 36, 97-102 https://doi.org/10.1016/S0168-1605(97)01260-9
  15. Cho JI, Lee SH, Lim JS, Kwak HS, Hwang IG (2011) Development of a predictive model describing the growth of Listeria Monocytogenes in fresh cut vegetable. J Food Hyg Safety, 26, 25-30

Cited by

  1. Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modeling Program (IPMP) 2013 vol.107, 2015, https://doi.org/10.1016/j.meatsci.2015.04.006
  2. 국내산 쌈채소의 신선편의 가공적성 및 저장 중 품질변화 vol.49, pp.6, 2012, https://doi.org/10.9721/kjfst.2017.49.6.632