DOI QR코드

DOI QR Code

Implementation of Multi-channel Concurrent Detection Homodyne Frequency-domain Diffuse Optical Imaging System

다채널 동시측정을 적용한 호모다인 주파수영역 확산 광 이미징 시스템의 구현

  • Jun, Young Sik (Department of Electronics and Radio Engineering, Kyung Hee University) ;
  • Baek, Woon Sik (Department of Electronics and Radio Engineering, Kyung Hee University)
  • 전영식 (경희대학교 전자.전파공학과) ;
  • 백운식 (경희대학교 전자.전파공학과)
  • Received : 2011.12.05
  • Accepted : 2012.01.06
  • Published : 2012.02.25

Abstract

In this paper, we developed a frequency-domain diffuse optical imaging (DOI) system for imaging non-invasively using near-infrared (NIR) light sources and detectors. 70-MHz modulation and a homodyne scheme were adopted. By calibration of the coupling coefficients, concurrent detection measurements by 4 detector sets were optimized. We presented experimental reconstruction images of absorption and scattering coefficients in a liquid phantom, located an anomaly in the phantom and determined its optical properties. The images by the multi-channel concurrent detection were improved over the results by single-channel sequential detection. Tomographic slices of absorption and scattering coefficients in the phantom with an anomaly were also presented.

본 논문에서는 근적외선(NIR, near-infrared) 영역의 레이저 광원 및 광검출기를 이용한 주파수영역(frequency-domain) 확산 광이미징(DOI, diffuse optical imaging) 시스템을 구현하였다. 검출신호의 진폭 및 위상 추출에는 70MHz의 단일 변조주파수를 사용하는 호모다인(homodyne) 검출기법을 적용하였으며, 4개의 검출기를 이용해 동시측정이 가능하도록 시스템을 최적화하였다. 각 검출기들이 서로 다른 결합계수(coupling coefficient)를 가짐으로써 발생하는 진폭 및 위상의 편차를 보정하였다. 본 논문에서 제작한 DOI 시스템을 이용하여, 생체조직을 모사한 액체팬텀에 이형성분(anomaly)을 삽입하여 흡수 및 산란 분포에 대한 영상을 복원함으로써 이형성분의 위치 및 광학적 특성에 대한 정보를 획득하였으며, 단일 광검출기를 사용하는 순차적인 측정에 의한 결과보다 영상복원 성능이 개선되었음을 보였다. 또한, 동일한 액체팬텀에 대해서, 측정위치를 이동해가며 각 단층 슬라이스에 대한 흡수계수 및 산란계수 분포영상을 복원함으로써 구현된 시스템을 이용해 단층촬영이 가능함을 보였다.

Keywords

References

  1. K. Lee, "Optical mammography: diffuse optical imaging of breast cancer," World J. Clin. Oncol. 2, 64-72 (2011). https://doi.org/10.5306/wjco.v2.i1.64
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. Mag. 18, 57-75 (2001). https://doi.org/10.1109/79.962278
  3. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, "Diffuse optics for tissue monitoring and tomography," Rep. Prog. Phys. 73, 076701 (2010). https://doi.org/10.1088/0034-4885/73/7/076701
  4. R. Choe, "Diffuse optical tomography and spectroscopy of breast cancer and fetal brain," Ph. D. Thesis, University of Pennsylvania, Pennsylvania (2005), pp. 81-87.
  5. Y. S. Jun and W. S. Baek, "Experimental reconstruction images of tissue phantom by diffuse optical tomography," J. Phys.: Conf. Ser. 224, 012146 (2010). https://doi.org/10.1088/1742-6596/224/1/012146
  6. K. D. Paulsen and H. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995). https://doi.org/10.1118/1.597488
  7. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, "Optical image reconstruction using frequency-domain data: simulations and experiments," J. Opt. Soc. Am. A 13, 253-266 (1996). https://doi.org/10.1364/JOSAA.13.000253
  8. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). https://doi.org/10.1118/1.597634
  9. M. Schweiger and S. R. Arridge, "The finite element method for the propagation of light in scattering media: frequency domain case," Med. Phys. 24, 895-902 (1997). https://doi.org/10.1118/1.598008
  10. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D.Paulsen, "Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction," Commun. Numer. Meth. Engng. 25, 711-732 (2009). https://doi.org/10.1002/cnm.1162
  11. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-3481 (1998). https://doi.org/10.1063/1.1149123
  12. Y. S. Jun and W. S. Baek, "Frequency-domain diffuse optical tomography system adopting Lock-in amplifier," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 22, 134-140 (2011). https://doi.org/10.3807/KJOP.2011.22.3.134
  13. H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991). https://doi.org/10.1364/AO.30.004507
  14. T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and J. P. Kaipio, "Computational calibration method for optical tomography," Appl. Opt. 44, 1879-1888 (2005). https://doi.org/10.1364/AO.44.001879