DOI QR코드

DOI QR Code

Characteristics of Nanoscale Modes Guided by the Total External Reflection of Surface Plasmon-Polaritons

표면 플라즈몬-폴라리톤의 외부-전반사에 의해 도파되는 나노 크기 모드의 특성

  • Received : 2011.12.21
  • Accepted : 2012.01.30
  • Published : 2012.02.25

Abstract

Total external reflection (TER), which does not occur on a dielectric interface, is a unique feature of surface plasmon-polaritons (SPP). We propose an SPP-TER waveguide structure consisting of low-index dielectric nanocore covered with high-index dielectric on a flat metal surface. The SPP mode confined in the nanocore by the TER effect has a mode size much smaller than wavelength scale. Numerical comparison of mode characteristics between the SPP-TER waveguides and other total-internal-reflection-based waveguides such as metal or high-index dielectric nanowires show that the SPP-TER structures can possess higher modal gain for applications of nanocavity lasers.

표면 플라즈몬-폴라리톤(surface plasmon-polaritons, SPP)의 외부-전반사(total external reflection, TER) 현상은 유전체 만으로 된 경계 면에서는 일어나지 않는 SPP 만의 독특한 특성이다. 금속 면 위에 놓인 낮은 굴절률 유전체 선이 도파로 코어 역할을 하여 파장 이하의 크기를 갖는 도파모드를 형성하는 SPP-TER 도파로 구조를 제안하였다. 코어 단면적 변화에 따른 SPP-TER 모드의 전파 특성을 기존의 높은 굴절률 유전체 도파로 및 금속 도파로 구조와 비교 분석하였다. 코어의 면적이 작아짐에 따라 SPP-TER 모드의 크기가 파장보다 수십 배 작아질 수 있으면서도, 주변에 이득물질을 갖는 경우에는 기존의 도파로 구조보다도 높은 이득을 가질 수 있음을 보였다. 따라서, 제안된 SPP-TER 구조는 나노 크기의 레이저 구현에 기여하리라 기대된다.

Keywords

References

  1. S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, New York, USA, 2007).
  2. D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation : quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003). https://doi.org/10.1103/PhysRevLett.90.027402
  3. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Nötzel, C. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009). https://doi.org/10.1364/OE.17.011107
  4. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature 460, 1110-1113 (2009). https://doi.org/10.1038/nature08318
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009). https://doi.org/10.1038/nature08364
  6. R. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nature Mater. 10, 110-113 (2011). https://doi.org/10.1038/nmat2919
  7. M. Seo, S. Kwon, H. Ee, and H. Park, "Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity," Nano Lett. 9, 4078-4082 (2009). https://doi.org/10.1021/nl902274m
  8. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005). https://doi.org/10.1103/PhysRevLett.95.063901
  9. M. I. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano Lett. 6, 2604-2608 (2006). https://doi.org/10.1021/nl062082g
  10. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
  11. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polaritonlike waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). https://doi.org/10.1103/PhysRevB.33.5186
  12. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, San Diego, USA, 1991).