DOI QR코드

DOI QR Code

An Efficient Synthesis of Substituted Quinolines via Indium(III) Chloride Catalyzed Reaction of Imines with Alkynes

  • Zhu, Mei (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Fu, Weijun (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Xun, Chen (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Zou, Guanglong (School of Chemistry and Environmental Science, Guizhou University for Nationalities)
  • Received : 2011.10.11
  • Accepted : 2011.10.26
  • Published : 2012.01.20

Abstract

An efficient synthetic method for the preparation of quinolines through indium(III) chloride-catalyzed tandem addition-cyclization-oxidation reactions of imines with alkynes was developed. The processes can provide a diverse range of quinoline derivatives in good yields from simple imines and alkynes.

Keywords

References

  1. Michael, J. P. Nat. Prod. Rep. 1997, 14, 605. https://doi.org/10.1039/np9971400605
  2. Larsen, R. D.; Corley, E. G.; King, A. O.; Carrol, J. D.; Davis, P.; Verhoeven, T. R.; Reider, P. J.; Labelle, M.; Gauthier, J. Y.; Xiang, Y. B.; Zamboni, R. J. J. Org. Chem. 1996, 61, 3398. https://doi.org/10.1021/jo952103j
  3. Chen, Y. L.; Fang, K. C.; Sheu, J. Y.; Hsu, S. L.; Tzeng, C. C. J. Med. Chem. 2001, 44, 2374. https://doi.org/10.1021/jm0100335
  4. Roma, G.; Braccio, M. D.; Grossi, G.; Mattioli, F.; Ghia, M. Eur. J. Med. Chem. 2000, 1021.
  5. Sawada, Y.; Kayakiri, H.; Abe, Y.; Imai, K.; Katayama, A.; Oku, T.; Tanaka, H. J. Med. Chem. 2004, 47, 1617. https://doi.org/10.1021/jm030159x
  6. Groisy- Delcey, M.; Groisy, A.; Carrez, D.; Huel, C.; Chaironi, A.; Ducrot, P.; Bisagni, E.; Jin, L.; Leclercq, G. Bioorg. Med. Chem. 2000, 8, 2629. https://doi.org/10.1016/S0968-0896(00)00194-2
  7. Strekowski, L.; Say, M.; Henary, M.; Ruiz, P.; Manzel, L.; Macfarlane, D. E.; Bojarski, A. J. J. Med. Chem. 2003, 46, 1242. https://doi.org/10.1021/jm020374y
  8. Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 34, 7315. https://doi.org/10.1021/ma0100448
  9. Jegou, G.; Jenekhe, S. A. Macromolecules 2001, 34, 7926. https://doi.org/10.1021/ma0111562
  10. Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1996, 8, 579. https://doi.org/10.1021/cm9504753
  11. Jenekhe, S. A.; Zhang, X.; Chen, X. L.; Choong, V. E.; Gao, Y.; Hsieh, B. R. Chem. Mater. 1997, 9, 409. https://doi.org/10.1021/cm960474q
  12. Zhang, X.; Shetty, A. S.; Jenekhe, S. A. Macromolecules 2000, 33, 2069. https://doi.org/10.1021/ma991913k
  13. Curran, A. C. W. J. Chem. Soc., Perkin Trans. 1 1976, 975.
  14. Misani, F.; Bogert, M. T. J. Org. Chem. 1945, 10, 347. https://doi.org/10.1021/jo01180a014
  15. Sakai, N.; Aoki, D.; Hamajima, T.; Konakahara, T. Tetrahedron Lett. 2006, 47, 1261. https://doi.org/10.1016/j.tetlet.2005.12.080
  16. Denmark, S. E.; Venkatraman, S. J. Org. Chem. 2006, 71, 1668. https://doi.org/10.1021/jo052410h
  17. Kobayashi, K.; Takanohashi, A.; Watanabe, S.; Morikawa, O.; Konishi, H. Tetrahedron Lett. 2000, 41, 7657. https://doi.org/10.1016/S0040-4039(00)01313-7
  18. Case, F.; Buck, C. J. Org. Chem. 1956, 21, 697. https://doi.org/10.1021/jo01112a609
  19. Palimkar, S. S.; Siddiqui, S. A.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. J. Org. Chem. 2003, 68, 9371. https://doi.org/10.1021/jo035153u
  20. Dormer, P. G.; Eng, K. K.; Farr, R. N.; Humphrey, G. R.; McWilliams, J. C.; Reider, P. J.; Sager, J. W.; Volante, R. P. J. Org. Chem. 2003, 68, 467. https://doi.org/10.1021/jo026203i
  21. Gladiali, S.; Chelucci, G.; Mudadu, M. S.; Gastaut, M. A.; Thummel, R. P. J. Org. Chem. 2001, 66, 400. https://doi.org/10.1021/jo0009806
  22. Breitmaier, E.; Gassenmann, S.; Bayer, E. Tetrahedron 1970, 26, 5907. https://doi.org/10.1016/0040-4020(70)80027-8
  23. Martinez, R.; Ramon, D. J.; Yus, M. J. Org. Chem. 2008, 73, 9778. https://doi.org/10.1021/jo801678n
  24. Huo, Z.; Gridnev, L. D.; Yamamoto, Y. J. Org. Chem. 2010, 75, 1266. https://doi.org/10.1021/jo902603v
  25. Zhang, X.; Campo, M. A.; Yao, T.; Larock, R. C. Org. Lett. 2005, 7, 763. https://doi.org/10.1021/ol0476218
  26. Korivi, R. P.; Cheng, C. H. J. Org. Chem. 2006, 71, 7079. https://doi.org/10.1021/jo060800d
  27. Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592. https://doi.org/10.1021/ja060626a
  28. Cao, K.; Zhang, F. M.; Tu, Y. Q.; Zhou, X. T.; Fan. C. A. Chem. Eur. J. 2009, 15, 6332. https://doi.org/10.1002/chem.200900875
  29. Zhang, Y.; Li, P.; Wang, L. J. Heterocyclic Chem. 2011, 48, 153. https://doi.org/10.1002/jhet.417
  30. Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. Tetrahedron 2008, 64, 2755. https://doi.org/10.1016/j.tet.2008.01.046
  31. Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi, E.; Verdecchia, M. Synlett 2006, 3218.
  32. Ock, S. K.; Youn, S. W. Bull. Korean Chem. Soc. 2010, 31, 704. https://doi.org/10.5012/bkcs.2010.31.03.704
  33. Xie, H.; Zhu, J.; Chen, Z.; Li, S.; Wu, Y. Synlett 2010, 2659.
  34. Saito, A.; Kasai, J.; Konishi, T.; Hanzawa, Y. J. Org. Chem. 2010, 75, 6980. https://doi.org/10.1021/jo1013993
  35. Desrat, S.; Weghe, P. J. Org. Chem. 2009, 74, 6728. https://doi.org/10.1021/jo901291t
  36. Kuninobu, Y.; Inoue, Y.; Takai, K. Chem. Lett. 2007, 36, 1422. https://doi.org/10.1246/cl.2007.1422
  37. Bortolotti, B.; Leardini, R.; Nanni, D.; Zanardi, G. Tetrahedron 1993, 49, 10157. https://doi.org/10.1016/S0040-4020(01)80210-6
  38. Narasaka, K.; Shibata, T. Heterocycles 1993, 35, 1039. https://doi.org/10.3987/COM-92-S(T)98
  39. Leardini, R.; Nanni, D.; Tundo, A.; Zanardi, G.; Ruggieri, F. J. Org. Chem. 1992, 57, 1842. https://doi.org/10.1021/jo00032a043
  40. Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanrdi, G. J. Chem. Soc. Chem. Comm. 1984, 1320.
  41. Li, X.; Mao, Z.; Wang, Y.; Chen, W.; Lin, X. Tetrahedron 2011, 67, 3858. https://doi.org/10.1016/j.tet.2011.03.087
  42. Majumdar, K. C.; Ponra, S.; Ghosh, D.; Taher, A. Synlett 2011, 104.
  43. Bortolotti, B.; Leardini, R.; Nanni, D.; Zanrdi, G. Tetrahedron 1993, 49, 10157. https://doi.org/10.1016/S0040-4020(01)80210-6
  44. Yadav, J. S.; Reddy, B. V. S.; Srinivasa Rao, R.; Naveenkumar, V.; Nagaiah, K. Synthesis 2003, 1610.
  45. Gaddam, V.; Ramesh, S.; Nagarajan, R. Tetrahedron 2010, 66, 4218. https://doi.org/10.1016/j.tet.2010.03.095
  46. Guchhait, S. K.; Jadeja, K.; Madaan, C. Tetrahedron Lett. 2009, 50, 6861. https://doi.org/10.1016/j.tetlet.2009.09.125
  47. Huang, H.; Jiang, H.; Chen, K.; Liu, H. J. Org. Chem. 2009, 74, 5476. https://doi.org/10.1021/jo901101v
  48. Zhao, Y.; Zhang, W.; Wang, S.; Liu, Q. J. Org. Chem. 2007, 72, 4985. https://doi.org/10.1021/jo070069q
  49. Zhang, J.; Yang, W.; Song, L.; Cai, X.; Zhu, S. Tetrahedron Lett. 2004, 45, 5771. https://doi.org/10.1016/j.tetlet.2004.04.179
  50. Amii, H.; Kishikawa, Y.; Uneyama, K. Org. Lett. 2001, 3, 1109. https://doi.org/10.1021/ol006936u
  51. Jiang, B.; Si, Y. G. J. Org. Chem. 2002, 67, 9449. https://doi.org/10.1021/jo0204606
  52. Liu, X. Y.; Ding, P.; Huang, J. S.; Che, C. M. Org. Lett. 2007, 9, 2645. https://doi.org/10.1021/ol070814l
  53. Lekhok, K. C.; Prajapati, D.; Boruah, R. C. Synlett 2008, 655.
  54. Sakai, N.; Annaka, K.; Konakahara, T. J. Org. Chem. 2006, 71, 3653. https://doi.org/10.1021/jo060245f
  55. Yanada, R.; Hashimoto, K.; Tokizane, T.; Miwa, Y.; Minami, H.; Yanada, K.; Ishikura, M.; Takemoto, Y. J. Org. Chem. 2008, 73, 5135. https://doi.org/10.1021/jo800474c
  56. Sakai, N.; Annaka, K.; Fujita, A.; Sato, A.; Konakahara, T. J. Org. Chem. 2008, 73, 4160. https://doi.org/10.1021/jo800464u
  57. Loh, T. P.; Chua, G. L. Chem. Commun. 2006, 2739.
  58. Cintas, P. Synlett 1995, 1087.
  59. Podlech, J.; Maier, T. C. Synthesis 2003, 633.
  60. Nair, V.; Ros, S.; Jayan; C. N.; Pillai, B. S. Tetrahedron 2004, 60, 1959. https://doi.org/10.1016/j.tet.2003.12.037
  61. Ranu, B. C. Eur. J. Org. Chem. 2000, 2347.
  62. Auge, J.; Lubin-Germain, N.; Uziel, J. Synthesis 2007, 1739.
  63. Lee, P. H. Bull. Korean Chem. Soc. 2007, 28, 17. https://doi.org/10.5012/bkcs.2007.28.1.017
  64. Teo, Y. C.; Loh, T. P. Org. Lett. 2005, 7, 2539. https://doi.org/10.1021/ol050518d
  65. Miyai, T.; Onishi, Y.; Baba, A. Tetrahedron Lett. 1998, 39, 6291. https://doi.org/10.1016/S0040-4039(98)01333-1
  66. Loh, T. P.; Wei, L. L. Tetrahedron Lett. 1998, 39, 323. https://doi.org/10.1016/S0040-4039(97)10478-6
  67. Friestad, G. K.; Korapala, C. S.; Ding, H. J. Org. Chem. 2006, 71, 281. https://doi.org/10.1021/jo052037d
  68. Seomoon, D. A. J.; Lee, P. H. Org. Lett. 2009, 11, 2401. https://doi.org/10.1021/ol9005213
  69. Yasuda, M.; Saito, T.; Ueba, M.; Baba, A. Angew. Chem., Int. Ed. 2004, 43, 1414. https://doi.org/10.1002/anie.200353121
  70. Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212. https://doi.org/10.1021/jo980793w
  71. Miura, K.; Fujisawa, N.; Hosomi, A. J. Org. Chem. 2004, 69, 2427. https://doi.org/10.1021/jo035780j
  72. Onishi, Y.; Ogawa, D.; Yasuda, M.; Baba, A. J. Am. Chem. Soc. 2002, 124, 13690. https://doi.org/10.1021/ja0283246
  73. Takita, R.; Fukuta, Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. Org. Lett. 2005, 7, 1363. https://doi.org/10.1021/ol050069h
  74. Yasuda, M.; Saito, T.; Ueba, M.; Baba, A. Angew. Chem., Int. Ed. 2004, 43, 1414. https://doi.org/10.1002/anie.200353121
  75. Tsuchimoto, T.; Matsubayashi, H.; Kaneko, M.; Nagase, Y.; Miyamura, T.; Shirakawa, E. J. Am. Chem. Soc. 2008, 130, 15823. https://doi.org/10.1021/ja803954e
  76. Fu, W. J.; Xu, C.; Zou, G.; Hong, D.; Deng, D.; Wang, Z.; Ji, B. Synlett 2009, 763.
  77. Huang, X.; Fu, W. J. Tetrahedron Lett. 2008, 49, 2359. https://doi.org/10.1016/j.tetlet.2008.02.081
  78. Fu, W. J.; Huang, X. Tetrahedron Lett. 2008, 49, 562. https://doi.org/10.1016/j.tetlet.2007.11.068
  79. Kulkarni, A.; Torok, B. Green Chem. 2010, 12, 875. https://doi.org/10.1039/c001076f
  80. Dong, Q. L.; Liu, G. S.; Zhou, H. B.; Chen, L.; Yao, Z. J. Tetrahedron Lett. 2008, 49, 1636. https://doi.org/10.1016/j.tetlet.2008.01.024
  81. Akiyama, T.; Nakashima, S.; Yokota, K.; Fuchibe, K. Chem. Lett. 2004, 33, 922. https://doi.org/10.1246/cl.2004.922

Cited by

  1. Diastereoselective, multicomponent access to trans-2-aryl-4-arylamino-1,2,3,4-tetrahydroquinolines via an AA′BC sequential four-component reaction and their application to 2-arylquinoline synthesis vol.11, pp.4, 2013, https://doi.org/10.1039/C2OB26754C
  2. An Efficient Synthesis of Substituted Furans by Cupric Halide-Mediated Intramolecular Halocyclization of 2-(1-Alkynyl)-2-alken-1-ones vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.887
  3. Metal free carboamination of internal alkynes – an easy access to polysubstituted quinolines vol.52, pp.33, 2016, https://doi.org/10.1039/C5CC10460B
  4. ) chloride promoted reaction of cyclic imine dibenzo[b,f][1,4]oxazepines with alkynes vol.4, pp.2, 2017, https://doi.org/10.1039/C6QO00545D
  5. in Glycerol as Green Solvent vol.2015, pp.2314-6923, 2015, https://doi.org/10.1155/2015/743094
  6. 2,4-Diarylquinolines: Synthesis, Absorption and Emission Properties vol.38, pp.4, 2012, https://doi.org/10.3184/174751914x13945617338344
  7. MOF-5 as a highly efficient and recyclable catalyst for one pot synthesis of 2,4-disubstituted quinoline derivatives vol.44, pp.20, 2012, https://doi.org/10.1039/d0nj01301c
  8. Recent Advances of Indium(III) Chloride Catalyzed Reactions in Organic Synthesis vol.6, pp.2, 2012, https://doi.org/10.1002/slct.202003828